Drawing hypergraphs using NURBS curves

Ronny Bergmann

Institute of Mathematics
University of Lübeck

presentation at the
Kolloquium der Institute für Mathematik und Informatik
November 25th, 2009

Content

(9) Introduction
(2) Representing periodic curves

- B-splines \& NURBS
- Periodic NURBS
(3) The hyperedge shape
- Definition
- Creation \& validation

4. Summary

Introduction

Things done before
As a student of computer science I thought about how to draw graphs.
\Rightarrow student research project: Gravel, an editor for graphs

- focus on scientific illustrations and convenient editing
- export especially for $T_{E X}$ (vector graphics)

Figure: graph generated with Gravel, from Schiermeyer et al.

- some other editors for graphs available
- none supported editing of hypergraphs
\Rightarrow drawing hyperedges with other tools
\Rightarrow no convenient editing
\Rightarrow diploma thesis about drawing and editing hypergraphs

common drawing: the subset standard

- nodes are drawn as dots (as in graphs)
- usually nodes are placed first
- hyperedge is a subset of nodes
\Rightarrow drawn as a "cloud" surrounding all its nodes
\rightarrow blackboard
\Rightarrow handle these "smooth" curves (on a computer)

Requirements of curves

...for drawing and editing of a hyperedge
a curve representing a hyperedge should be

- numerically stable
- easy to create
- convenient and interactive editible, e.g. by affin-linear trasnformations
- edited just locally (if most of the curve is already done)
- periodic, so that it
- looks "smooth", without rough edges
- outlines all nodes
common in computer graphics: B-splines \& NURBS
but they are usually not periodic.

B-splines - definition

a very short introduction of B-splines
a B-spline curve $B(u), u \in[a, b]$ consists of

- a polynomial degree d
\Rightarrow smoothness
- $n+1$ control points P_{0}, \ldots, P_{n}
\Rightarrow form
- a knot vector $\left(t_{i}\right)_{i=0}^{m}$ with $m=n+d+1$ (nondecreasing)
\Rightarrow recursive B-spline basis functions $N_{i, d}(u), i=0, \ldots, n$
- piecewise nonnegative polynomial functions
- model distribution of the P_{i} "along the curve"
with those we get the \mathbf{B}-spline curve

$$
B(u)=\sum_{i=0}^{n} N_{i, d}(u) P_{i}, \quad u \in\left[t_{d}, t_{m-d}\right]=[a, b]
$$

B-splines - Example

a simple B-spline curve

- degree 3
- $n=5 \Rightarrow$ six control points
- knot vector $\left(t_{i}\right)_{i=0}^{9}=\left(\begin{array}{llllllllll}0 & 0 & 0 & 0 & \frac{1}{3} & \frac{2}{3} & 1 & 1 & 1 & 1\end{array}\right)$

P_{1} has local influence: $\left[t_{1}, t_{5}\right)=\left[0, \frac{2}{3}\right)$

B-splines - properties

nice features we obtain by using B-spline curves

- P_{0} and P_{n} are interpolated, if $t_{0}=t_{d}=a$ and $t_{m-d}=t_{m}=b$
- P_{i} only has local influence to the curve
- Let p be the maximum multiplicity of a knot from t_{d+1} to t_{m-d-1}
$\Rightarrow B(u)$ is "smooth", because it is $d-p$-times differentiable
try to reach $p=1$!
with $B(u)$ get a curve that
- is numerical stable
- has easy computable derivatives
- is a piecewise polynomial

But we can't form circles!

NURBS

Non Uniform Rational B-Splines

additional weight $w_{i}>0$ for each control point P_{i}
\Rightarrow different influence of each P_{i} to the curve
\Rightarrow new NURBS basis functions $R_{i, d}(u)$, piecewise rational polynoms (based on knot vector and weights)
with that modification

- NURBS curve $C(u)=\sum_{i=0}^{n} R_{i, d}(u) P_{i}$ is a piecewise rational polynomial
- circles are possbile
most important
- B-spline properties also apply for NURBS
- using B-spline algorithms by calculation in homogeneous coordinates

NURBS - example

showing different influences of a control point to the curve
variation of weight w_{3} from the last example with

- $w_{3}=2$ (dotted line)
- $w_{3}=1$ (solid line) $\Rightarrow B$-spline curve
- $w_{3}=\frac{1}{2}$ (dashed line)

Periodic NURBS

How do we model a shape with NURBS?
idea: close the curve to a periodic one
$\Rightarrow C^{(k)}(a)=C^{(k)}(b), k=0, \ldots, d-p$
change definition of

- $N_{i, d}(u)$ repeat themselves periodically (shifted)
- change $P_{i} \Rightarrow$ periodic sequence
\Rightarrow periodic curve
- no endpoint interpolation!
- all other properties remain.
- adapt algorithms, so they keep the curve periodic!

Periodic NURBS - example

What does s shape look like?

- smooth curve
- surrounds exactely one area iff it is injective.

Periodic NURBS - example

What does s shape look like?

- smooth curve
- surrounds exactely one area iff it is injective.
- degree 3

- $C^{(k)}(a)=C^{(k)}(b)$, $k=0,1,2$
- start/end could be moved anywhere
- if any point on the curve may be moved
\Rightarrow just the curve is needed in the GUI

Algorithms for NURBS

All your NURBS need are... these.
with these (periodic) NURBS the following algorithms were implemented

- calculate $C^{(k)}(u), k=0, \ldots, m$ ($k=0$ for drawing)
- extract arbitraty subcurve (ignoring start/end)
- affin linear transformations (affecting subcurve or whole curve)
- projection onto the curve (essential for interactive editing)
- moving arbitrary point on curve anywhere
except for projection, all these algorithms are well known.
\Rightarrow small adjustments to fit periodic NURBS
\Rightarrow for projection: circular clipping algorithm (Chen et al., 2008)

Drawing hypergraphs
 using NURBS curves

Ronny Bergmann
Institute of Mathematics
University of Lübeck

Excursion: Distance betwenn a point and a NURBS Curve

Distance and projection on the NURBS Curve

Projection means, for a NURBS curve $C(u)$ (with control Points and weight P_{i}, w_{i}) and a point p
Compute the point $C(\hat{u})$ with shortest distance to p
The algorithm is important for interactive editing! (point inversion)

It's idea is based on clipping using a circles around p, that get smaller and smaller

Main idea of the algorithm

divide and conquer with Newton iteration
main idea: circles around p of small radii, cut everything outside

- Split the Curve into small parts (knot insertion \Rightarrow beziér curves)
(2) init circle around p running through $C(a)$ or $C(b)$
(For each part decide whether
- the part is outside the circle \Rightarrow discard
- the part is inside the circle, then
a) it has exactly one minimum \Rightarrow Newton iteration \Rightarrow new circle
b) it has more than one \Rightarrow split in the middle, use endpoints as new circle radii
(1) among all local minima from the newton iteration is the global minimum

Looking at the distance

calculating a function for the distance

The product

$$
f(u)=(C(u)-p)(C(u)-p)^{T}
$$

is the objective squared distance function.
$f(u)$ is a beziér curve iff $C(u)$ is a beziér curve (K. Mørken,1991) degree of $f(u)$: $2 d$
$f(u)$ has real valued control points!
\Rightarrow use $f(u)$ to determine whether a curve is outise a circle around p (convex hull property)
\Rightarrow if the control points have one "turning point" (variation diminishing property)
\Rightarrow exactly one minimum

Projection - example

finding the shortest distance in a few slides

At first: split Initial circle K_{1}
(1) $B_{1} \Rightarrow$ Circle K_{2} \Rightarrow discard B_{1}
(2) B_{2} is inside K_{2} \Rightarrow newton $\Rightarrow p_{C}$
(0) new radius with p_{C} $\Rightarrow K_{3}$
(c) discard B_{3}, it is outside K_{3}
only one newton iteration result is p_{C}
Figure: projection

Projection - example

finding the shortest distance in a few slides

At first: split Initial circle K_{1}
(1) $B_{1} \Rightarrow$ Circle K_{2} \Rightarrow discard B_{1}
(2) B_{2} is inside K_{2} \Rightarrow newton $\Rightarrow p_{C}$
(0) new radius with p_{C} $\Rightarrow K_{3}$
(c) discard B_{3}, it is outside K_{3}
only one newton iteration result is p_{C}

Projection - example

finding the shortest distance in a few slides

At first: split Initial circle K_{1}
(1) $B_{1} \Rightarrow$ Circle K_{2} \Rightarrow discard B_{1}
(2) B_{2} is inside K_{2} \Rightarrow newton $\Rightarrow p_{C}$
(0) new radius with p_{C} $\Rightarrow K_{3}$
(c) discard B_{3}, it is outside K_{3}
only one newton iteration result is p_{C}
Figure: projection

Projection - example

finding the shortest distance in a few slides

At first: split Initial circle K_{1}
($B_{1} \Rightarrow$ Circle K_{2} \Rightarrow discard B_{1}
(2) B_{2} is inside K_{2} \Rightarrow newton $\Rightarrow p_{C}$
(0) new radius with p_{C} $\Rightarrow K_{3}$
(c) discard B_{3}, it is outside K_{3}
only one newton iteration result is p_{C}

Projection - example

finding the shortest distance in a few slides

At first: split Initial circle K_{1}
(1) $B_{1} \Rightarrow$ Circle K_{2} \Rightarrow discard B_{1}
(2) B_{2} is inside K_{2} \Rightarrow newton $\Rightarrow p_{C}$
(0) new radius with p_{C} $\Rightarrow K_{3}$
(c) discard B_{3}, it is outside K_{3}
only one newton iteration result is p_{C}
Figure: projection

Projection - example

finding the shortest distance in a few slides

At first: split Initial circle K_{1}
(1) $B_{1} \Rightarrow$ Circle K_{2} \Rightarrow discard B_{1}
(2) B_{2} is inside K_{2} \Rightarrow newton $\Rightarrow p_{C}$
(0) new radius with p_{C} $\Rightarrow K_{3}$
(9) discard B_{3}, it is outside K_{3}
only one newton iteration result is p_{C}
Figure: projection

Projection - example

finding the shortest distance in a few slides

At first: split Initial circle K_{1}
(1) $B_{1} \Rightarrow$ Circle K_{2} \Rightarrow discard B_{1}
(2) B_{2} is inside K_{2} \Rightarrow newton $\Rightarrow p_{C}$
(0) new radius with p_{C} $\Rightarrow K_{3}$
(9) discard B_{3}, it is outside K_{3}
only one newton iteration result is p_{C}

The hyperedge shape

What should a drawing of a hyperedge look like? Part I
hypergraph $\mathscr{H}=(V, \mathscr{E})$, with nodes $v_{i} \in V$ and hyperedges $E_{i} \in \mathscr{E} \subset \mathscr{P}(V) \backslash \emptyset$

types of shapes

- loops - e.g. E_{6}
- iff $|E|=2 \mid$, simple curve joining the nodes, e.g. E_{5}
- periodic curve enclosing only its nodes, e.g. E_{3}

Figure: a Gravel export of a hypergraph by C.Berge

The hyperedge shape - decorations

What should a drawing of a hyperedge look like? Part II
additional attributes for the curve of a shape

- solid, dashed, dotted,...
- line width
- color
- label (cf. last slide)
and a margin δ :
shortest distance from node borders of each $v \in E$ to the curve
with $\delta>0$ no node "touches" the curve
with $\delta>\alpha \in \mathbb{R}^{+}$we have a margin inside the shape

The hyperedge shape - construction

Creating a shape for an hyperedge.

Using periodic NURBS curves, we can create shapes:

- circles
- interpolation through user defined points
- convex hull based on interpolation and margin
and modify them globally or locally by
- scaling, rotation, translation
- move control points or positions on the curve
- replace parts

The hyperedge shape - validation

Did you forget including a node?
a hyperedge shape can be validated:

- Are all nodes $v \in E$ inside the shape?
- Are all others outside?
- Is the margin big enough?
some criteria can't be checked (up to now?)
- minimization of crossings
- simplicity and other aesthetic criteria

Gravel - editing graphs and hypergraphs

So how can you use that now?
all the presented elements are implemented in Gravel, an editor for graphs and hypergraphs

- hyperedges in the subset standard require periodic curves
- using NURBS and their algorithms
- extended to periodic NURBS
\Rightarrow interactive editing
- hyperedge shape as formal definition of the hyperedge drawing
- easy creation and modification of a shape
- validation of the hyperedge shape (mostly) possible
\Rightarrow a first editor for hypergraphs

future plans

What's next?
Gravel is available at gravel.darkmoonwolf.de (though in german only), the complete application is available as

- jar-file
- Mac OS X Application package
- source files
future plans are
- internationalization (using Java i18n)
- an algorithm API for
- graph and hypergraph drawing algorithms
- educative presentations of well known algorithms
- stepwise execution of algorithms
- more basic shapes for hyperedges

One final example

$T_{E} X$-Export using a TikZ picture in ${ }_{A} T_{E} X$

Figure: A competition hypergraph from Sonntag and Teichert

The End

Thanks for your attention.

Are there any questions?

