Multivariate Periodic Function Spaces*

Ronny Bergmann
Institute of Mathematics
University of Lübeck

February 3rd, 2011, Dagstuhl
Seminar on
Sparse Representations and Efficient Sensing of Data

* Joint work with J. Prestin

Contents

(1) Notation \& basic properties

(2) Characterizing periodic TI-spaces

(3) Decomposition

4 Summary and example

Definitions

On $\mathbb{T}^{d} \cong[0,2 \pi)^{d}$, the d-dimensional torus, we define the inner product

$$
\langle f, g\rangle=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}} f(\mathbf{x}) \overline{g(\mathbf{x})} d \mathbf{x}, \quad f, g: \mathbb{T}^{d} \rightarrow \mathbb{C}
$$

and norm $\|f\|^{2}=\langle f, f\rangle$
$L^{2}\left(\mathbb{T}^{d}\right):=\{f:||f|<\infty\}$ is a Hilbert space
Analogously:

$$
\langle\mathbf{a}, \mathbf{b}\rangle_{P^{2}}=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} a_{\mathbf{k}} \overline{b_{\mathbf{k}}}, \quad \mathbf{a}, \mathbf{b} \in I^{2}\left(\mathbb{Z}^{d}\right)
$$

and norm $\|\mathbf{a}\|_{p_{2}}$.

The pattern and the generating group

Let $\mathbf{M} \in \mathbb{Z}^{d \times d}$ be invertible. The lattice $\Lambda(\mathbf{M}):=\mathbf{M}^{-1} \mathbb{Z}^{d}$ is 1 -periodic. Let the pattern $\mathcal{P}(\mathbf{M})$ denote a full collection of coset representations for $+\bmod \mathbf{I}$, e.g.

$$
\mathcal{P}(\mathbf{M}):=\Lambda(\mathbf{M}) \cap[0,1)^{d}
$$

i.e. every $\mathbf{x} \in \Lambda(\mathbf{M})$ can be written as

$$
\begin{equation*}
\mathbf{x}=\mathbf{y}+\mathbf{z}, \quad \mathbf{y} \in \mathcal{P}(\mathbf{M}), \mathbf{z} \in \mathbb{Z}^{d} . \tag{1}
\end{equation*}
$$

We define the generating group $\mathcal{G}(\mathbf{M}):=\mathbf{M} \mathcal{P}(\mathbf{M})$. $\mathcal{G}(\mathbf{M})$ is a full collection of coset representations for $+\bmod \mathbf{M}$, i.e.

$$
\begin{equation*}
\mathbf{k}=\mathbf{h}+\mathbf{M z}, \quad \mathbf{h} \in \mathcal{G}(\mathbf{M}), \mathbf{z} \in \mathbb{Z}^{d} \tag{2}
\end{equation*}
$$

Smith normal form and cycles in $\mathcal{P}(\mathbf{M})$

Let $\mathbf{M} \in \mathbb{Z}^{d \times d}$ be invertible. The Smith normal form is a decomposition

$$
\mathbf{M}=\mathbf{Q E R},
$$

$|\operatorname{det} \mathbf{R}|=|\operatorname{det} \mathbf{Q}|=1$ and $\mathbf{E}=\operatorname{diag}\left(\varepsilon_{1}, \ldots \varepsilon_{d}\right)$
with the elementary divisors $\varepsilon_{j-1} \mid \varepsilon_{j}, j=2, \ldots, d$.
\mathbf{Q} and \mathbf{R} just perform a change of basis $\Rightarrow \mathcal{P}(\mathbf{M}) \cong \mathcal{P}(\mathbf{E})$
$\mathcal{P}(\mathbf{E})=\mathcal{C}_{\varepsilon_{1}} \otimes \cdots \otimes \mathcal{C}_{\varepsilon_{d}}$ is a direct sum of cycles, $\mathcal{C}_{\varepsilon_{j}}=\frac{1}{\varepsilon_{j}} \mathbf{e}_{j}\left\{0, \ldots, \varepsilon_{j}-1\right\}$.
$\Rightarrow \# \mathcal{P}(\mathbf{M})=\# \mathcal{G}(\mathbf{M})=\# \mathcal{P}\left(\mathbf{M}^{\boldsymbol{T}}\right)=|\operatorname{det} \mathbf{M}|=\varepsilon_{1} \cdot \ldots \cdot \varepsilon_{d}$

Example

of a Smith normal Form

Translation invariant subspaces

For $f \in L^{2}\left(\mathbb{T}^{d}\right)$ and $\mathbf{y} \in \mathcal{P}(\mathbf{M})$ the translation operator is given by

$$
T(\mathbf{y}) f:=f(\circ-2 \pi \mathbf{y}) .
$$

A linear subspace $V \subset L^{2}\left(\mathbb{T}^{d}\right)$ is called \mathbf{M}-invariant if

$$
f \in V \Rightarrow T(\mathbf{y}) f \in V \quad \text { for all } \mathbf{y} \in \mathcal{P}(\mathbf{M}) .
$$

Lemma

For any $f \in L^{2}\left(\mathbb{T}^{d}\right)$ the span of translates (w.r.t. \mathbf{M}), i.e.
$V_{\mathbf{M}}^{f}:=\operatorname{span}\{T(\mathbf{y}) f: \mathbf{y} \in \mathcal{P}(\mathbf{M})\}$, is \mathbf{M}-invariant

Proof.

Translation performs an index shift $(\bmod \mathbf{I})$ on $g=\sum_{\mathbf{y} \in \mathcal{P}(\mathbf{M})} a_{\mathbf{y}} T(\mathbf{y}) f \in V_{\mathbf{M}}^{f}$.

Fourier series

For all $f \in L^{2}\left(\mathbb{T}^{d}\right)$ it holds

$$
f=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} c_{\mathbf{k}}(f) \mathrm{e}^{i \mathbf{k}^{\top} \circ}, \text { where } c_{\mathbf{k}}(f)=\left\langle f, \mathrm{e}^{\mathrm{i} \mathbf{k}^{T} \rho}\right\rangle, \quad \mathbf{c}=\left(c_{\mathbf{k}}\right)_{\mathbf{k} \in \mathbb{Z}^{d}} \in I^{2}\left(\mathbb{Z}^{d}\right) .
$$

Parseval equation for $f, g \in L^{2}\left(\mathbb{T}^{d}\right)$:

$$
\langle f, g\rangle=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} c_{\mathbf{k}}(f) \overline{c_{\mathbf{k}}(g)}
$$

Lemma

The Fourier coefficients of $T(\mathbf{y})$ fare

$$
c_{\mathbf{k}}(T(\mathbf{y}) f)=c_{\mathbf{k}}(f(\circ-2 \pi \mathbf{y}))=\mathrm{e}^{-2 \pi \mathbf{k}^{T} \mathbf{y}} c_{\mathbf{k}}(f)
$$

(Fast) Fourier transform on $\mathcal{P}(\mathbf{M})$

Let $\mathbf{M} \in \mathbb{Z}^{d \times d}$ be invertible. The Fourier matrix $\mathcal{F}(\mathbf{M})$ is defined by

$$
\mathcal{F}(\mathbf{M}):=\frac{1}{\sqrt{m}}\left(\mathrm{e}^{-2 \pi \mathbf{h}^{\top} \mathbf{y}}\right)_{\mathbf{h} \in \mathcal{G}\left(\mathbf{M}^{\top}\right), \mathbf{y} \in \mathcal{P}(\mathbf{M})} \in \mathbb{C}^{m \times m}, \quad m=|\operatorname{det} \mathbf{M}| .
$$

Performs a DFT for any $\mathbf{a}=\left(a_{\mathbf{y}}\right)_{\mathbf{y} \in \mathcal{P}(\mathbf{M})}$ by $\hat{\mathbf{a}}=\left(\hat{a}_{\mathbf{h}}\right)_{\mathbf{h} \in \mathcal{G}(\mathbf{M})}=\sqrt{m} \mathcal{F}(\mathbf{M}) \mathbf{a}$
Permutations on rows and columns together with elementary divisors

$$
\mathcal{F}(\mathbf{M})=\mathbf{P}_{\mathbf{h}} \mathcal{F}_{\mathcal{E}_{1}} \otimes \cdots \otimes \mathcal{F}_{\varepsilon_{d}} \mathbf{P}_{\mathbf{y}}, \quad \mathcal{F}_{\varepsilon}=\left(\mathrm{e}^{-2 \pi \mathrm{ih} \varepsilon^{-1} g}\right)_{g, h=0}^{\varepsilon-1}
$$

where $\mathbf{P}_{\mathbf{h}}, \mathbf{P}_{\mathbf{y}}$ permute the elements of $\mathcal{G}\left(\mathbf{M}^{T}\right)$ and $\mathcal{P}(\mathbf{M})$ respectively, hence $\mathcal{F}(\mathbf{M}) \overline{\mathcal{F}}(\mathbf{M}){ }=\mathbf{I} \in \mathbb{C}^{m \times m}$.

This is used to obtain an implementation of the FFT $(O(m \log m))$.

Characterizing subspaces

Lemma

Let $\mathbf{M}=\mathbf{J N}$ be a decomposition of a regular matrix $\mathbf{M}, \mathbf{N}, \mathbf{J} \in \mathbb{Z}^{d \times d}$. Then

$$
\mathcal{P}(\mathbf{N}) \subset \mathcal{P}(\mathbf{M})
$$

Theorem

$g \in V_{\mathbf{M}}^{f}$ holds iff there exists $\mathbf{a}=\left(a_{\mathbf{y}}\right)_{\mathbf{y} \in \mathcal{P}(\mathbf{M})}$ with DFT $\hat{\mathbf{a}}=\left(\hat{a}_{\mathbf{h}}\right)_{\mathbf{h} \in \mathcal{G}\left(\mathbf{M}^{T}\right)}=\sqrt{m} \mathcal{F}(\mathbf{M}) \mathbf{a}$, such that

$$
\begin{equation*}
c_{\mathbf{h}+\mathbf{M}^{\top} \mathbf{z}}(g)=\hat{a}_{\mathbf{h}} c_{\mathbf{h}+\mathbf{M}^{\top} \mathbf{z}}, \quad \mathbf{h} \in \mathcal{G}\left(\mathbf{M}^{T}\right), \mathbf{z} \in \mathbb{Z}^{d} \tag{3}
\end{equation*}
$$

Hence $V_{\mathbf{N}}^{g} \subset V_{\mathbf{M}}^{f}$

Characterizing subspaces

Proof.

$g \in V_{\text {M }}^{f}$ iff g can be written as

$$
\begin{aligned}
g & =\sum_{\mathbf{y} \in \mathcal{P}(\mathbf{M})} a_{\mathbf{y}} T(\mathbf{y}) f \\
\Leftrightarrow c_{\mathbf{k}}(g) & =\sum_{\mathbf{y} \in \mathcal{P}(\mathbf{M})} a_{\mathbf{y}} \mathrm{e}^{-2 \pi \mathbf{k}^{\top} \mathbf{y}} c_{\mathbf{k}}(f), \quad \mathbf{k} \in \mathbb{Z}^{d}
\end{aligned}
$$

rewriting $\mathbf{k}=\mathbf{h}+\mathbf{M}^{T} \mathbf{z}, \mathbf{h} \in \mathcal{G}\left(\mathbf{M}^{T}\right), \mathbf{z} \in \mathbb{Z}^{d}$ and with $\mathrm{e}^{-2 \pi i \mathbf{z}^{\top} \mathbf{M y}}=1$

$$
c_{\mathbf{h}+\mathbf{M}^{T} \mathbf{z}}(g)=\sum_{\mathbf{y} \in \mathcal{P}(\mathbf{M})} a_{\mathbf{y}} \mathrm{e}^{-2 \pi \mathbf{h}^{\top} \mathbf{y}} \boldsymbol{C}_{\mathbf{h}+\mathbf{M}^{T} \mathbf{z}}(f)=\hat{a}_{\mathbf{h}} \boldsymbol{C}_{\mathbf{h}+\mathbf{M}^{T} \mathbf{z}}(f)
$$

Gram matrix of the translates

Let $f \in L^{2}\left(\mathbb{T}^{d}\right), \mathbf{M} \in \mathbb{Z}^{d \times d}$ be invertible and denote $\mathbf{f}=(T(\mathbf{y}) f)_{\mathbf{y} \in \mathcal{P}(\mathbf{M})}$. The Gram matrix is defined by

$$
\mathbf{G}(\mathbf{f}):=(\langle T(\mathbf{y}) f, T(\mathbf{x}) f\rangle)_{\mathbf{x}, \mathbf{y} \in \mathcal{P}(\mathbf{M})}=(\langle f, T(\mathbf{x}-\mathbf{y}) f\rangle)_{\mathbf{x}, \mathbf{y} \in \mathcal{P}(\mathbf{M})}
$$

Hence $\mathbf{G}(\mathbf{f})$ is circular.

Theorem

The Gram Matrix fulfills

$$
\mathbf{G}(\mathbf{f})=\mathcal{F}(\mathbf{M}) \operatorname{diag}\left(m \sum_{\mathbf{z} \in \mathbb{Z}^{d}}\left|c_{\mathbf{h}+\mathbf{M}^{\top} \mathbf{z}}(f)\right|^{2}\right)_{\mathbf{h} \in \mathcal{G}\left(\mathbf{M}^{\top}\right)}{\overline{\mathcal{F}}(\mathbf{M})^{\top}}^{\top}
$$

Proof of diagonalization of the Gram matrix

Proof.

$$
\begin{aligned}
(\langle f, T(\mathbf{x}-\mathbf{y}) f\rangle)_{\mathbf{x}, \mathbf{y} \in \mathcal{P}(\mathbf{M})}= & \left(\sum_{\mathbf{k} \in \mathbb{Z}^{d}} c_{\mathbf{k}}(f) \overline{\mathrm{e}^{-2 \pi \mathrm{i} \mathbf{k}^{T}(\mathbf{x}-\mathbf{y})} c_{\mathbf{k}}(f)}\right)_{\mathbf{x}, \mathbf{y} \in \mathcal{P}(\mathbf{M})} \\
= & \left(\sum_{\mathbf{h} \in \mathcal{G}\left(\mathbf{M}^{T}\right)} \sum_{\mathbf{z} \in \mathbb{Z}^{d}} \mathrm{e}^{-2 \pi \mathrm{i}\left(\mathbf{h}+\mathbf{M}^{T} \mathbf{z}\right)^{T}(\mathbf{y}-\mathbf{x})}\left|c_{\mathbf{h}+\mathbf{M}^{T} \mathbf{z}}(f)\right|^{2}\right)_{\mathbf{x}, \mathbf{y} \in \mathcal{P}(\mathbf{M})} \\
= & \left(\sum_{\mathbf{h} \in \mathcal{G}\left(\mathbf{M}^{T}\right)} \mathrm{e}^{-2 \pi \mathbf{h}^{T}(\mathbf{y}-\mathbf{x})} \sum_{\mathbf{z} \in \mathbb{Z}^{d}}\left|c_{\mathbf{h}+\mathbf{M}^{T} \mathbf{z}}(f)\right|^{2}\right)_{\mathbf{x}, \mathbf{y} \in \mathcal{P}(\mathbf{M})} \\
= & \frac{m}{\sqrt{m}}\left(\mathrm{e}^{-2 \pi \mathbf{i} \mathbf{h}^{T} \mathbf{y}} \sum_{\mathbf{z} \in \mathbb{Z}^{d}}\left|c_{\mathbf{h}+\mathbf{M}^{T} \mathbf{z}}(f)\right|^{2}\right)_{\mathbf{y} \in \mathcal{P}(\mathbf{M}), \mathbf{h} \in \mathcal{G}\left(\mathbf{M}^{T}\right)} \\
& \times \frac{1}{\sqrt{m}}\left(\mathrm{e}^{2 \pi \mathbf{i h}^{T} \mathbf{x}}\right)_{\mathbf{h} \in \mathcal{G}\left(\mathbf{M}^{T}\right), \mathbf{x} \in \mathcal{P}(\mathbf{M})}
\end{aligned}
$$

Orthonormal bases for V_{M}^{f}

Lemma

The set $\{T(\mathbf{y}) f: \mathbf{y} \in \mathcal{P}(\mathbf{M})\}$ is linearly independent iff

$$
\forall \mathbf{h} \in \mathcal{G}\left(\mathbf{M}^{T}\right): \sum_{\mathbf{z} \in \mathbb{Z}^{d}}\left|c_{\mathbf{h}+\mathbf{M}^{T} \mathbf{z}}(f)\right|^{2}>0
$$

Lemma

$\{T(\mathbf{y}) f: \mathbf{y} \in \mathcal{P}(\mathbf{M})\}$ are orthonormal iff

$$
\forall \mathbf{h} \in \mathcal{G}\left(\mathbf{M}^{T}\right) \sum_{\mathbf{z} \in \mathbb{Z}^{d}}\left|c_{\mathbf{h}+\mathbf{M}^{T} \mathbf{z}}(f)\right|^{2}=\frac{1}{m}
$$

Holds due to $\sum_{\mathbf{h} \in \mathcal{G}\left(\mathbf{M}^{\top}\right)} \frac{1}{m} \mathrm{e}^{-2 \pi \mathbf{h}^{\top}(\mathbf{y}-\mathbf{x})}= \begin{cases}1 & \mathbf{x}=\mathbf{y} \\ 0 & \text { else }\end{cases}$
\Rightarrow Orthonormalization of a basis

Orthogonal decomposition

Let

- $\mathbf{M}=\mathbf{J N}$ invertible and $|\operatorname{det} \mathbf{J}|=2 \Rightarrow \mathbf{p} \in \mathcal{G}\left(\mathbf{J}^{\top}\right) \backslash\{\mathbf{0}\}$ is unique.
- $f \in L^{2}\left(\mathbb{T}^{d}\right)$ with $\operatorname{dim} V_{\mathbf{M}}^{f}=m$ (Translates $T(\mathbf{y}) f$ are linear independent)
- $g \in V_{\mathbf{M}}^{f}$ with $\operatorname{dim} V_{\mathbf{N}}^{g}=n=|\operatorname{det} \mathbf{N}|$, where

$$
\hat{\mathbf{a}}=\left(\hat{a}_{\mathbf{k}}\right)_{\mathbf{k} \in \mathcal{G}\left(\mathbf{M}^{T}\right)}: c_{\mathbf{k}+\mathbf{M}^{\top} \mathbf{z}}(g)=\hat{a}_{\mathbf{k}} c_{\mathbf{k}+\mathbf{M}^{\top} \mathbf{z}}(f) \text { for all } \mathbf{k} \in \mathcal{G}\left(\mathbf{M}^{T}\right), \mathbf{z} \in \mathbb{Z}^{d}
$$

Goal: Decompose

$$
\begin{equation*}
V_{\mathbf{M}}^{f}=V_{\mathbf{N}}^{g} \oplus V_{\mathbf{N}}^{h} \Leftrightarrow h \in V_{\mathbf{M}}^{f}:\langle T(\mathbf{y}) g, T(\mathbf{x}) h\rangle=0, \forall \mathbf{x}, \mathbf{y} \in \mathcal{P}(\mathbf{N}) . \tag{4}
\end{equation*}
$$

Theorem

(4) holds iff $\exists \sigma_{\mathbf{q}} \in \mathbb{C} \backslash\{\mathbf{0}\}, \mathbf{q} \in \mathcal{G}\left(\mathbf{M}^{\top}\right)$ with $\sigma_{\mathbf{q}}=-\sigma_{\mathbf{q}+\mathbf{N}^{\top} \mathbf{p}}$ fulfilling

$$
\begin{equation*}
c_{\mathbf{k}}(h)=\frac{\sigma_{\mathbf{k} \bmod \mathbf{M}^{\top}} \overline{\hat{a}}_{\mathbf{k}+\mathbf{N}^{\top} \mathbf{p} \bmod \mathbf{M}^{\top}}^{\sum_{\mathbf{z} \in \mathbb{Z}^{\mathbf{d}}}\left|c_{\mathbf{k}+\mathbf{M}^{\top} \mathbf{z}}(f)\right|^{2}} c_{\mathbf{k}}(f), \quad \mathbf{k} \in \mathbb{Z}^{d} . .{ }^{d} .}{} \tag{5}
\end{equation*}
$$

Orthogonal decomposition

Proof.

$\Rightarrow) h \in V_{\mathbf{M}}^{f} \Rightarrow \exists\left(\hat{b}_{\mathbf{k}}\right)_{\mathbf{k} \in \mathcal{G}\left(\mathbf{M}^{T}\right)}: c_{\mathbf{k}+\mathbf{M}_{\mathbf{z}}}(h)=\hat{b}_{\mathbf{k}} c_{\mathbf{k}+\mathbf{M}^{T} \mathbf{z}}(f), \forall \mathbf{k} \in \mathcal{G}\left(\mathbf{M}^{T}\right), \mathbf{z} \in \mathbb{Z}^{d}$. The vanishing Gram matrix $(\langle T(\mathbf{x}) g, T(\mathbf{y}) h)\rangle\rangle_{\mathbf{x}, \mathbf{y} \in \mathcal{P}(\mathbf{N})}$ yields for $\mathbf{k} \in \mathcal{G}\left(\mathbf{N}^{T}\right)$

$$
\begin{aligned}
& =\hat{a}_{\mathbf{k}} \hat{b}_{\mathbf{k}} \sum_{\mathbf{z} \in \mathbb{Z}^{d}}\left|c_{\mathbf{k}+\mathbf{M}^{T}}(f)\right|^{2}+\hat{a}_{\mathbf{k}+\mathbf{N}^{\top} \mathbf{p}} \hat{\mathbf{b}}_{\mathbf{k}+\mathbf{N}^{\top} \mathbf{p}} \sum_{\mathbf{z} \in \mathbb{Z}^{d}}\left|c_{\mathbf{k}+\mathbf{N}^{\top} \mathbf{p}+\mathbf{M}^{\top} \mathbf{z}}(f)\right|^{2}
\end{aligned}
$$

$\hat{a}_{\mathbf{h}}=\hat{a}_{\mathbf{h}+\mathbf{N}^{\top} \mathbf{p}}=0$ is impossible due to $\operatorname{dim} V_{\mathbf{N}}^{g}=n$

Summary

- Smith normal form leads to fast pattern and Fourier algorithms
- basis transforms and decompositions m-dimensional spaces
- decomposition in $V_{\mathbf{M}}^{f}$ into $j=|\operatorname{det} \boldsymbol{J}|$ subspaces in $\mathcal{O}(m)$.

Perspective

- Classify directions for $\mathcal{P}(\mathbf{M})$ and h or $c_{\mathbf{k}}(h)$
- general wavelet system despite diriclet case
- possible dilation matrices J

Example of a decomposition

Define $f, g, h \in L^{2}\left(\mathbb{T}^{2}\right)$ as trigonometric Polynomials with a (discrete) Box Splines

Example of a decomposition

Define $f, g, h \in L^{2}\left(\mathbb{T}^{2}\right)$ as trigonometric Polynomials with a (discrete) Box Splines

Example of a decomposition

Define $f, g, h \in L^{2}\left(\mathbb{T}^{2}\right)$ as trigonometric Polynomials with a (discrete) Box Splines

spectrum $c_{\mathbf{k}}(g)$ and $c_{\mathbf{k}}(h)$

Example of a decomposition

Define $f, g, h \in L^{2}\left(\mathbb{T}^{2}\right)$ as trigonometric Polynomials with a (discrete) Box Splines

Example of a decomposition

Define $f, g, h \in L^{2}\left(\mathbb{T}^{2}\right)$ as trigonometric Polynomials with a (discrete) Box Splines

Thank you for your attention.

Literature

[CL94] C.K. Chui, C. Li: A general framework of multivariate wavelets with duals, ACHA 1-4 / 1994 p. 368-390
[LP10] D. Langemann, J. Prestin: multivariate periodic Wavelet Analysis, ACHA 28-1 / 2010 p. 46-66
[PT95] G. Plonka, M. Tasche: On the computation of periodic spline wavelets, ACHA 2-1 / 1995 p. 1-14
[Se98] K. Selig: periodische Wavelet-Packets und eine gradoptimale Schauderbasis, PhD Thesis, University of Rostock, Germany, Shaker Verlag, 1998

