

Die multivariate anisotrope Wavelet-Transformation auf dem Torus

Ronny Bergmann

Institut für Mathematik Universität zu Lübeck

Kolloquiumsvortrag Kaiserslautern 8. April 2013

Einführung

Periodische Wavelets im Eindimensionalen

- translations invariante Räume mit Verschiebung $2\pi/N$
- Wavelets [PT95]
- schnelle Algorithmen und de la Vallée Poussin-Mittel [Se98]

Im Mehrdimensionalen

- Verschiebungen auf $\mathbb{T}^d = [-\pi, \pi)^d$
- aus dem Skalierungsfaktor J wird eine Skalierungsmatrix J [MS03]
- bei festem Faktor (z. B. $|\det \mathbf{J}| = 2$) verschiedene Matrizen möglich [LP10]
- Richtungspräferenz
- Umgang mit "Curse of Dimension"

gleichverteilte Punkte auf dem Torus

$$\mathcal{P}(\mathbf{M}) := \mathbf{M}^{-1} \mathbb{Z}^d \cap \left[-\frac{1}{2}, \frac{1}{2}\right)^d$$

gleichverteilte Punkte auf dem Torus

$$\mathcal{P}(\mathbf{M}) := \mathbf{M}^{-1} \mathbb{Z}^d \cap \left[-\frac{1}{2}, \frac{1}{2}\right)^d$$

gleichverteilte Punkte auf dem Torus

$$\mathcal{P}(\mathbf{M}) := \mathbf{M}^{-1} \mathbb{Z}^d \cap \left[-\frac{1}{2}, \frac{1}{2}\right)^d$$

- $|\mathcal{P}(\mathbf{M})| = |\det \mathbf{M}| =: m$
- $(\mathcal{P}(\mathbf{M}), + \mod 1)$ ist eine Gruppe
- Teilmuster $\mathcal{P}(\mathbf{N})$ für $\mathbf{M} = \mathbf{J}\mathbf{N}$, $\mathbf{J}, \mathbf{N} \in \mathbb{Z}^{d \times d}$
- etwa im dyadischen Fall $|\det \mathbf{J}| = 2$:
- $J_X := \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$

gleichverteilte Punkte auf dem Torus

$$\mathcal{P}(\mathbf{M}) := \mathbf{M}^{-1} \mathbb{Z}^d \cap \left[-\frac{1}{2}, \frac{1}{2}\right)^d$$

- $|\mathcal{P}(\mathbf{M})| = |\det \mathbf{M}| =: m$
- $(\mathcal{P}(\mathbf{M}), + \mod 1)$ ist eine Gruppe
- Teilmuster $\mathcal{P}(\mathbf{N})$ für $\mathbf{M} = \mathbf{J}\mathbf{N}, \quad \mathbf{J}, \mathbf{N} \in \mathbb{Z}^{d \times d}$
- etwa im dyadischen Fall $|\det \mathbf{J}| = 2$:

•
$$\mathbf{J}_X := \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

•
$$\mathbf{J}_{\mathbf{Y}} := \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

gleichverteilte Punkte auf dem Torus

$$\mathcal{P}(\mathbf{M}) := \mathbf{M}^{-1} \mathbb{Z}^d \cap \left[-\frac{1}{2}, \frac{1}{2}\right)^d$$

- $|\mathcal{P}(\mathbf{M})| = |\det \mathbf{M}| =: m$
- $(\mathcal{P}(\mathbf{M}), + \mod 1)$ ist eine Gruppe
- Teilmuster $\mathcal{P}(\mathbf{N})$ für $\mathbf{M} = \mathbf{J}\mathbf{N}, \quad \mathbf{J}, \mathbf{N} \in \mathbb{Z}^{d \times d}$
- etwa im dyadischen Fall $|\det \mathbf{J}| = 2$:

•
$$\mathbf{J}_X := \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

•
$$\mathbf{J}_{\mathbf{Y}} := \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

•
$$\mathbf{J}_D := \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

Translationsinvarianz I

Mit T_y $f := f(\circ - 2\pi \mathbf{y})$ heißt $V \subset L_2(\mathbb{T}^d)$ **M**-invariant, falls

 $\forall \mathbf{y} \in \mathcal{P}(\mathbf{M}) : \mathsf{T}_{\mathbf{y}} f \in V.$

 \Rightarrow Raum der Translate $V^f_{\mathbf{M}} := \operatorname{span}\{\mathsf{T}_{\mathbf{y}}f, \quad \mathbf{y} \in \mathcal{P}(\mathbf{M})\}$ ist **M**-invariant, denn

 $g \in V^f_{\mathbf{M}}$ lässt sich schreiben als

$$g = \sum_{\mathbf{y} \in \mathcal{P}(\mathbf{M})} a_{\mathbf{y}} \mathsf{T}_{\mathbf{y}} f, \quad a_{\mathbf{y}} \in \mathbb{C} \qquad \Rightarrow \qquad \mathsf{T}_{\mathbf{x}} g = \sum_{\mathbf{y} \in \mathcal{P}(\mathbf{M})} a_{\mathbf{y}-\mathbf{x}} \mathsf{T}_{\mathbf{y}} f \in V_{\mathbf{M}}^{f}$$

Fourier-Transformation

Die Menge $\mathcal{G}(\mathbf{M}) := \mathbf{M}\mathcal{P}(\mathbf{M}) = \mathbf{M}[-\frac{1}{2},\frac{1}{2})^d \cap \mathbb{Z}^d$ heißt *erzeugende Menge*.

Die Fourier-Matrix auf $\mathcal{P}(\mathbf{M})$:

$$\mathcal{F}(\mathbf{M}) := \frac{1}{\sqrt{m}} \left(e^{-2\pi i \mathbf{h}^{\mathsf{T}} \mathbf{y}} \right)_{\mathbf{h} \in \mathcal{G}(\mathbf{M}^{\mathsf{T}}), \mathbf{y} \in \mathcal{P}(\mathbf{M})} \in \mathbb{C}^{m \times m}$$

- $\mathbf{h} \in \mathcal{G}(\mathbf{M}^T)$ adressiert Zeilen
- $\mathbf{y} \in \mathcal{P}(\mathbf{M})$ die Spalten
- für $\mathcal{G}(\mathbf{M}^T)$, $\mathcal{P}(\mathbf{M})$ je eine feste Anordnung der Elemente
- mit $\mathbf{a} = (a_{\mathbf{y}})_{\mathbf{y} \in \mathcal{P}(\mathbf{M})} \in \mathbb{C}^m$ (sortiert wie die Spalten): DFT auf $\mathcal{P}(\mathbf{M})$

$$\hat{\mathbf{a}} = (\hat{a}_{\mathbf{h}})_{\mathbf{h} \in \mathcal{G}(\mathbf{M}^{\mathrm{T}})} = \sqrt{m} \mathcal{F}(\mathbf{M}) \mathbf{a} \in \mathbb{C}^{m}$$

Fourier-Koeffizienten

• Fourier-Koeffizienten für $f \in L_2(\mathbb{T}^d)$

$$c_{\mathbf{k}}(f) := \langle f, \mathrm{e}^{\mathrm{i}\mathbf{k}^{T}\mathbf{o}}
angle = rac{1}{(2\pi)^{d}} \int_{\mathbb{T}^{d}} f(\mathbf{x}) \mathrm{e}^{-\mathrm{i}\mathbf{k}^{T}\mathbf{x}} \, \mathrm{d}\mathbf{x}, \quad \mathbf{k} \in \mathbb{Z}^{d}$$

 \Rightarrow Parsevalsche Gleichung:

$$\langle f,g
angle = rac{1}{(2\pi)^d}\int\limits_{\mathbb{T}^d} f(\mathbf{x})\overline{g(\mathbf{x})}\,\mathrm{d}\mathbf{x} = \sum_{\mathbf{k}\in\mathbb{Z}^d} c_{\mathbf{k}}(f)\overline{c_{\mathbf{k}}(g)}$$

• Gramsche Matrix $\mathbf{G} = (\langle \mathsf{T}_{\mathbf{x}} f, \mathsf{T}_{\mathbf{y}} f \rangle)_{\mathbf{x}, \mathbf{y} \in \mathcal{P}(\mathbf{M})}$ diagonalisierbar mit $\mathcal{F}(\mathbf{M})$

 $\Rightarrow T_y f, y \in \mathcal{P}(M)$ linear unabhängig

$$\Leftrightarrow \forall \, \mathbf{h} \in \mathcal{G}(\mathbf{M}^{T}) : \sum_{\mathbf{z} \in \mathbb{Z}^{d}} |c_{\mathbf{h} + \mathbf{M}^{T} \mathbf{z}}(f)|^{2} > 0$$

Translationsinvarianz II

Charakterisierung der Translate in Fourier-Koeffizienten

Schreiben
$$g \in V^f_{\mathbf{M}}$$
 mit $c_{\mathbf{k}}(\mathsf{T}_{\mathbf{y}}f) = \mathrm{e}^{-2\pi \mathrm{i} \mathbf{y}^{\mathsf{T}} \mathbf{k}} c_{\mathbf{k}}(f)$ als

$$g = \sum_{\mathbf{y} \in \mathcal{P}(\mathbf{M})} a_{\mathbf{y}} \mathsf{T}_{\mathbf{y}} f \quad \Leftrightarrow \quad c_{\mathbf{k}}(g) = \sum_{\mathbf{y} \in \mathcal{P}(\mathbf{M})} a_{\mathbf{y}} \mathrm{e}^{-2\pi \mathrm{i} \mathbf{k}^{\mathsf{T}} \mathbf{y}} c_{\mathbf{k}}(f), \quad \mathbf{k} \in \mathbb{Z}^{d}$$

 $\text{Zerlegen}\, \boldsymbol{k} = \boldsymbol{h} + \boldsymbol{M}^{T}\boldsymbol{z}, \boldsymbol{h} \in \mathcal{G}(\boldsymbol{M}^{T}), \boldsymbol{z} \in \mathbb{Z}^{d}\,(\mathrm{e}^{-2\pi\mathrm{i}\boldsymbol{z}^{T}\boldsymbol{M}\boldsymbol{y}} = 1)$

$$\Leftrightarrow c_{\mathbf{h}+\mathbf{M}^{\mathsf{T}}\mathbf{z}}(g) = \sum_{\mathbf{y}\in\mathcal{P}(\mathbf{M})} a_{\mathbf{y}} \mathrm{e}^{-2\pi\mathrm{i}\mathbf{h}^{\mathsf{T}}\mathbf{y}} c_{\mathbf{h}+\mathbf{M}^{\mathsf{T}}\mathbf{z}}(f) = \hat{a}_{\mathbf{h}} c_{\mathbf{h}+\mathbf{M}^{\mathsf{T}}\mathbf{z}}(f)$$

Schnelle Algorithmen I

Zurück zum Tensorprodukt

• Smith-Normalform: Zerlegung in ganzzahlige Matrizen $\mathbf{M} = \mathbf{QER}$ mit $|\det \mathbf{Q}| = |\det \mathbf{R}| = 1$ und $\mathbf{E} = \text{diag}(\epsilon_1, \dots, \epsilon_d), \epsilon_{j-1}|\epsilon_j, j = 2, \dots, d$

 \Rightarrow Basiswechsel zu Tensorprodukt-Muster $\mathcal{P}(\mathbf{E})$

$$\mathcal{F}(\mathsf{M}) = \mathsf{P}_{\mathsf{h}} \mathcal{F}_{\epsilon_1} \otimes \cdots \otimes \mathcal{F}_{\epsilon_d} \mathsf{P}_{\mathsf{y}}, \quad \mathcal{F}_{\epsilon} = \left(\mathrm{e}^{-2\pi \mathrm{i}h\epsilon^{-1}g}
ight)_{g,h=0}^{\epsilon-1}$$

- $\mathbf{P}_{\mathbf{h}}$ und $\mathbf{P}_{\mathbf{y}}$ Umsortierung in $\mathcal{G}(\mathbf{M}^{T})$ und $\mathcal{P}(\mathbf{M})$
- \Rightarrow Row-Column-Algorithmus

\Rightarrow Fourier-Transformation in O(m log m)

Wavelet-Transformation

Gegeben seien

- Faktorisierung $\mathbf{M} = \mathbf{JN}$, $|\det \mathbf{J}| = 2$
- Skalierungsfunktionen $\xi, \varphi \in L_2(\mathbb{T}^d), \varphi \in V^{\xi}_{\mathbf{M}}$ mit
- $\mathsf{T}_{\mathbf{y}}\xi$, $\mathbf{y} \in \mathcal{P}(\mathbf{M})$ linear unabhängig $\Rightarrow \dim V_{\mathbf{M}}^{\xi} = m$
- $T_{\mathbf{x}}\varphi$, $\mathbf{x} \in \mathcal{P}(\mathbf{N})$ linear unabhängig $\Rightarrow \dim V_{\mathbf{N}}^{\varphi} = \frac{m}{2}$
- \Rightarrow Es existiert ein *Wavelet* ψ , so dass $V^{\xi}_{M} = V^{\varphi}_{N} \oplus V^{\psi}_{N}$
- $\Rightarrow \text{Zerlegung der Funktion } f_{\mathsf{M}} \in V_{\mathsf{M}}^{\xi} \text{ in } \quad f_{\mathsf{M}} = f_{\mathsf{N}} + g_{\mathsf{N}}, \quad f_{\mathsf{N}} \in V_{\mathsf{N}}^{\varphi}, \ g_{\mathsf{N}} \in V_{\mathsf{N}}^{\psi}$
 - *f*_N ist eine "gröbere Darstellung"
 - g_N heißt Wavelet-Anteil von $f_M \Rightarrow$ Detail
 - richtungsselektiv, abhängig von J

Schnelle Algorithmen II

Beschreibung im Frequenzbereich

Zerlegung in Fourier- und $V_{\mathbf{M}}^{\xi}$ -Koeffizienten: Mit

$$f_{\mathbf{M}} = \sum_{\mathbf{y} \in \mathcal{P}(\mathbf{M})} a_{f_{\mathbf{M}},\mathbf{y}} \mathsf{T}_{\mathbf{y}}\xi, \qquad \varphi = \sum_{\mathbf{y} \in \mathcal{P}(\mathbf{M})} a_{\varphi,\mathbf{y}} \mathsf{T}_{\mathbf{y}}\xi$$

die gesuchte Funktion $f_{\mathbf{N}} = \sum_{\mathbf{x} \in \mathcal{P}(\mathbf{N})} a_{f_{\mathbf{N}},\mathbf{x}} \mathsf{T}_{\mathbf{x}}\varphi$
 $\hat{a}_{f_{\mathbf{N}},\mathbf{k}} = \frac{1}{\sqrt{|\det \mathbf{J}|}} \sum_{\mathbf{g} \in \mathcal{G}(\mathbf{J}^{\mathsf{T}})} \overline{\hat{a}}_{\varphi,\mathbf{k}+\mathbf{N}^{\mathsf{T}}\mathbf{g}} \hat{a}_{f_{\mathbf{M}},\mathbf{k}+\mathbf{N}^{\mathsf{T}}\mathbf{g}}, \quad \mathbf{k} \in \mathcal{G}(\mathbf{N}^{\mathsf{T}})$

analog mit $\psi \in V_{\mathbf{M}}^{\xi}$ für $g_{\mathbf{N}} \in V_{\mathbf{N}}^{\psi}$

$$\Rightarrow$$
 Wavelet-Transformation in O(m)

gilt für

- $\mathcal{K}(\mathbf{M}^T) = \mathbf{M}^T[-\frac{1}{2}, \frac{1}{2}]^d \cap \mathbb{Z}^d$
- Dirichlet-Skalierungsfunktion $c_{\mathbf{k}}(\varphi_{\mathbf{M}}) = \frac{1}{\sqrt{m}} \mathbf{1}_{\mathcal{K}(\mathbf{M}^T)}(\mathbf{k})$
- \Rightarrow Gibbs-Phänomen
 - Ränder gesondert betrachten für Orthonormalität

Für
$$\mathbf{M} = \begin{pmatrix} 28 & -12 \\ 12 & 4 \end{pmatrix}$$
 und $\mathbf{J} = \mathbf{J}_X \Rightarrow \mathbf{N} = \begin{pmatrix} 14 & -6 \\ 12 & 4 \end{pmatrix}$

•
$$\mathcal{K}(\mathbf{M}^T) = \mathbf{M}^T[-\frac{1}{2}, \frac{1}{2}]^d \cap \mathbb{Z}^d$$

- Dirichlet-Skalierungsfunktion $c_{\mathbf{k}}(\varphi_{\mathbf{M}}) = \frac{1}{\sqrt{m}} \mathbf{1}_{\mathcal{K}(\mathbf{M}^T)}(\mathbf{k})$
- ⇒ Gibbs-Phänomen
 - Ränder gesondert betrachten für Orthonormalität

Für
$$\mathbf{M} = \begin{pmatrix} 28 & -12 \\ 12 & 4 \end{pmatrix}$$
 und $\mathbf{J} = \mathbf{J}_X \Rightarrow \mathbf{N} = \begin{pmatrix} 14 & -6 \\ 12 & 4 \end{pmatrix}$

 $c_{\mathbf{k}}(\varphi_{\mathbf{N}}), |c_{\mathbf{k}}(\psi_{\mathbf{N}})|$

- $\mathcal{K}(\mathbf{M}^T) = \mathbf{M}^T[-\frac{1}{2}, \frac{1}{2}]^d \cap \mathbb{Z}^d$
- de la Vallée Poussin-Mittel $c_{\mathbf{k}}(\tilde{\varphi}_{\mathbf{M}})$
- \Rightarrow Lokalisierung
 - Glattheit auch am Rand

Für
$$\mathbf{M} = \begin{pmatrix} 28 & -12 \\ 12 & 4 \end{pmatrix}$$
 und $\mathbf{J} = \mathbf{J}_X \Rightarrow \mathbf{N} = \begin{pmatrix} 14 & -6 \\ 12 & 4 \end{pmatrix}$

 $c_{\mathbf{k}}(\tilde{\varphi}_{\mathbf{N}}), |c_{\mathbf{k}}(\tilde{\psi}_{\mathbf{N}})|$

schematisch

20

- $\mathcal{K}(\mathbf{M}^T) = \mathbf{M}^T[-\frac{1}{2}, \frac{1}{2}]^d \cap \mathbb{Z}^d$
- Dirichlet-Skalierungsfunktion $c_{\mathbf{k}}(\varphi_{\mathbf{M}}) = \frac{1}{\sqrt{m}} \mathbf{1}_{\mathcal{K}(\mathbf{M}^T)}(\mathbf{k})$
- ⇒ Gibbs-Phänomen
 - Ränder gesondert betrachten für Orthonormalität

Für
$$\mathbf{M} = \begin{pmatrix} 28 & -12 \\ 12 & 4 \end{pmatrix}$$
 und $\mathbf{J} = \mathbf{J}_X \Rightarrow \mathbf{N} = \begin{pmatrix} 14 & -6 \\ 12 & 4 \end{pmatrix}$

 $c_{\mathbf{k}}(\varphi_{\mathbf{N}})$

 $C_{\mathbf{k}}(\psi_{\mathbf{N}}) \times e^{2\pi i \mathbf{k}^{T} \mathbf{N}^{-1} \mathbf{g}}, \ \mathbf{g} \in \mathcal{P}(\mathbf{J}) \setminus \{\mathbf{0}\}$

- $\mathcal{K}(\mathbf{M}^T) = \mathbf{M}^T[-\frac{1}{2}, \frac{1}{2}]^d \cap \mathbb{Z}^d$
- de la Vallée Poussin-Mittel $c_{\mathbf{k}}(\tilde{\varphi}_{\mathbf{M}})$
- \Rightarrow Lokalisierung
 - Glattheit auch am Rand

Für
$$\mathbf{M} = \begin{pmatrix} 28 & -12 \\ 12 & 4 \end{pmatrix}$$
 und $\mathbf{J} = \mathbf{J}_X \Rightarrow \mathbf{N} = \begin{pmatrix} 14 & -6 \\ 12 & 4 \end{pmatrix}$

 $c_{\mathbf{k}}(\tilde{\varphi}_{\mathbf{N}})$

 $C_{\mathbf{k}}(\tilde{\psi}_{\mathbf{N}}) \times e^{2\pi i \mathbf{k}^T \mathbf{N}^{-1} \mathbf{g}}, \ \mathbf{g} \in \mathcal{P}(\mathbf{J}) \setminus \{\mathbf{0}\}$

- $\mathcal{K}(\mathbf{M}^T) = \mathbf{M}^T[-\frac{1}{2}, \frac{1}{2}]^d \cap \mathbb{Z}^d$
- Dirichlet-Skalierungsfunktion $\varphi_{\mathbf{M}}$
- ⇒ Gibbs-Phänomen
 - im Zeitbereich: Richtungspräferenz

Für
$$\mathbf{M} = \begin{pmatrix} 28 & -12 \\ 12 & 4 \end{pmatrix}$$
 und $\mathbf{J} = \mathbf{J}_X \Rightarrow \mathbf{N} = \begin{pmatrix} 14 & -6 \\ 12 & 4 \end{pmatrix}$

- $\mathcal{K}(\mathbf{M}^T) = \mathbf{M}^T[-\frac{1}{2}, \frac{1}{2}]^d \cap \mathbb{Z}^d$
- Dirichlet-Skalierungsfunktion $\varphi_{\mathbf{M}}$
- ⇒ Gibbs-Phänomen
 - im Zeitbereich: Richtungspräferenz

Für
$$\mathbf{M} = \begin{pmatrix} 28 & -12 \\ 12 & 4 \end{pmatrix}$$
 und $\mathbf{J} = \mathbf{J}_X \Rightarrow \mathbf{N} = \begin{pmatrix} 14 & -6 \\ 12 & 4 \end{pmatrix}$

- $\mathcal{K}(\mathbf{M}^T) = \mathbf{M}^T [-\frac{1}{2}, \frac{1}{2}]^d \cap \mathbb{Z}^d$
- Dirichlet-Skalierungsfunktion $\varphi_{\mathbf{M}}$
- ⇒ Gibbs-Phänomen
 - im Zeitbereich: Richtungspräferenz

Für
$$\mathbf{M} = \begin{pmatrix} 28 & -12 \\ 12 & 4 \end{pmatrix}$$
 und $\mathbf{J} = \mathbf{J}_X \Rightarrow \mathbf{N} = \begin{pmatrix} 14 & -6 \\ 12 & 4 \end{pmatrix}$

- $\mathcal{K}(\mathbf{M}^T) = \mathbf{M}^T[-\frac{1}{2}, \frac{1}{2}]^d \cap \mathbb{Z}^d$
- de la Vallée Poussin-Mittel $\,\widetilde{\varphi}_{\mathbf{M}}\,$
- \Rightarrow Lokalisierung
 - im Zeitbereich: Richtungspräferenz

Für
$$\mathbf{M} = \begin{pmatrix} 28 & -12 \\ 12 & 4 \end{pmatrix}$$
 und $\mathbf{J} = \mathbf{J}_X \Rightarrow \mathbf{N} = \begin{pmatrix} 14 & -6 \\ 12 & 4 \end{pmatrix}$

- Box Spline $B_{\Xi}, \ \equiv = \frac{\pi}{8} \begin{pmatrix} 8 & 0 & -1 \\ 0 & 8 & 1 \end{pmatrix}$
- Samplingpunkte: $2\pi \mathbf{y}, \mathbf{y} \in \mathcal{P}(\mathbf{M}), \mathbf{M} = \begin{pmatrix} 512 & 0\\ 0 & 512 \end{pmatrix}$
- Dirichlet-Wavelets
- 3 Zerlegunsmöglichkeiten:

 \mathbf{J}_{Y}

Beispiel: Zerlegung und Lokalität

- Box Spline B_{Θ} , $\Theta = \frac{\pi}{8} \begin{pmatrix} 8 & 0 & 1 & 0 & -1 \\ 0 & 8 & 0 & 1 & 1 \end{pmatrix}$
- um $\frac{\pi}{3}$ gedreht
- Samplingpunkte: $2\pi \mathbf{y}, \mathbf{y} \in \mathcal{P}(\mathbf{M}_2)$, $\mathbf{M}_2 = \begin{pmatrix} 256 & -444 \\ 444 & 256 \end{pmatrix}$
- gleiche Zerlegung wie im letzten Beispiel

Beispiel: Zerlegung und Lokalität

R. Bergmann

Beispiel: Zerlegung und Lokalität

- Box Spline B_{Θ} , $\Theta = \frac{\pi}{8} \begin{pmatrix} 8 & 0 & 1 & 0 & -1 \\ 0 & 8 & 0 & 1 & 1 \end{pmatrix}$
- um $\frac{\pi}{3}$ gedreht
- $\bullet \ \textbf{M}_3 = \bigl(\begin{smallmatrix} 254 & -444 \\ 446 & 260 \end{smallmatrix}\bigr), \ \textbf{M}_1 = \bigl(\begin{smallmatrix} 512 & 0 \\ 0 & 512 \end{smallmatrix}\bigr)$
- Zerlegung: $\mathbf{M}_3 = \mathbf{N}$ bzw. $\mathbf{M}_1 = \mathbf{N}'$

- Box Spline B_{Θ} , $\Theta = \frac{\pi}{8} \begin{pmatrix} 8 & 0 & 1 & 0 & -1 \\ 0 & 8 & 0 & 1 & 1 \end{pmatrix}$
- um $\frac{\pi}{3}$ gedreht
- $\bullet \ \textbf{M}_3 = \bigl(\begin{smallmatrix} 254 & -444 \\ 446 & 260 \end{smallmatrix}\bigr), \ \textbf{M}_1 = \bigl(\begin{smallmatrix} 512 & 0 \\ 0 & 512 \end{smallmatrix}\bigr)$
- Zerlegung: $\mathbf{M}_3 = \mathbf{J}_D \mathbf{N}$ bzw. $\mathbf{M}_1 = \mathbf{J}_Y \mathbf{N}'$

- Box Spline B_{Θ} , $\Theta = \frac{\pi}{8} \begin{pmatrix} 8 & 0 & 1 & 0 & -1 \\ 0 & 8 & 0 & 1 & 1 \end{pmatrix}$
- um $\frac{\pi}{3}$ gedreht
- $\bullet \ \boldsymbol{M}_3 = \bigl(\begin{smallmatrix} 254 & -444 \\ 446 & 260 \end{smallmatrix}\bigr), \ \boldsymbol{M}_1 = \bigl(\begin{smallmatrix} 512 & 0 \\ 0 & 512 \end{smallmatrix}\bigr)$
- Zerlegung: $\mathbf{M}_3 = \mathbf{J}_D \mathbf{J}_Y \mathbf{N}$ bzw. $\mathbf{M}_1 = \mathbf{J}_Y \mathbf{J}_Y^+ \mathbf{N}'$

- Box Spline B_{Θ} , $\Theta = \frac{\pi}{8} \begin{pmatrix} 8 & 0 & 1 & 0 & -1 \\ 0 & 8 & 0 & 1 & 1 \end{pmatrix}$
- um $\frac{\pi}{3}$ gedreht
- $\bullet \ \boldsymbol{M}_3 = \bigl(\begin{smallmatrix} 254 & -444 \\ 446 & 260 \end{smallmatrix}\bigr), \ \boldsymbol{M}_1 = \bigl(\begin{smallmatrix} 512 & 0 \\ 0 & 512 \end{smallmatrix}\bigr)$
- Zerlegung: $\mathbf{M}_3 = \mathbf{J}_D \mathbf{J}_Y \mathbf{J}_Y \mathbf{N}$ bzw. $\mathbf{M}_1 = \mathbf{J}_Y \mathbf{J}_Y^+ \mathbf{J}_Y \mathbf{N}'$

- Box Spline B_{Θ} , $\Theta = \frac{\pi}{8} \begin{pmatrix} 8 & 0 & 1 & 0 & -1 \\ 0 & 8 & 0 & 1 & 1 \end{pmatrix}$
- um $\frac{\pi}{3}$ gedreht
- $\bullet \ \boldsymbol{M}_3 = \bigl(\begin{smallmatrix} 254 & -444 \\ 446 & 260 \end{smallmatrix}\bigr), \ \boldsymbol{M}_1 = \bigl(\begin{smallmatrix} 512 & 0 \\ 0 & 512 \end{smallmatrix}\bigr)$
- Zerlegung: $\mathbf{M}_3 = \mathbf{J}_D \mathbf{J}_Y \mathbf{J}_Y \mathbf{J}_Y \mathbf{N}$ bzw. $\mathbf{M}_1 = \mathbf{J}_Y \mathbf{J}_Y^+ \mathbf{J}_Y \mathbf{J}_Y \mathbf{N}'$

- Box Spline B_{Θ} , $\Theta = \frac{\pi}{8} \begin{pmatrix} 8 & 0 & 1 & 0 & -1 \\ 0 & 8 & 0 & 1 & 1 \end{pmatrix}$
- um $\frac{\pi}{3}$ gedreht
- $\bullet \ \boldsymbol{M}_3 = \bigl(\begin{smallmatrix} 254 & -444 \\ 446 & 260 \end{smallmatrix}\bigr), \ \boldsymbol{M}_1 = \bigl(\begin{smallmatrix} 512 & 0 \\ 0 & 512 \end{smallmatrix}\bigr)$
- Zerlegung: $\mathbf{M}_3 = \mathbf{J}_D \mathbf{J}_Y \mathbf{J}_Y \mathbf{J}_X \mathbf{N}$ bzw. $\mathbf{M}_1 = \mathbf{J}_Y \mathbf{J}_Y^+ \mathbf{J}_Y \mathbf{J}_Y \mathbf{J}_X \mathbf{N}'$

- Box Spline B_{Θ} , $\Theta = \frac{\pi}{8} \begin{pmatrix} 8 & 0 & 1 & 0 & -1 \\ 0 & 8 & 0 & 1 & 1 \end{pmatrix}$
- um $\frac{\pi}{3}$ gedreht
- $\bullet \ \boldsymbol{M}_3 = \bigl(\begin{smallmatrix} 254 & -444 \\ 446 & 260 \end{smallmatrix}\bigr), \ \boldsymbol{M}_1 = \bigl(\begin{smallmatrix} 512 & 0 \\ 0 & 512 \end{smallmatrix}\bigr)$
- Zerlegung: $\mathbf{M}_3 = \mathbf{J}_D \mathbf{J}_Y \mathbf{J}_Y \mathbf{J}_X \mathbf{N}$ bzw. $\mathbf{M}_1 = \mathbf{J}_Y \mathbf{J}_Y^+ \mathbf{J}_Y \mathbf{J}_Y \mathbf{J}_X \mathbf{N}'$

- Box Spline B_{Θ} , $\Theta = \frac{\pi}{8} \begin{pmatrix} 8 & 0 & 1 & 0 & -1 \\ 0 & 8 & 0 & 1 & 1 \end{pmatrix}$
- um $\frac{\pi}{3}$ gedreht
- $\bullet \ \boldsymbol{M}_3 = \bigl(\begin{smallmatrix} 254 & -444 \\ 446 & 260 \end{smallmatrix}\bigr), \ \boldsymbol{M}_1 = \bigl(\begin{smallmatrix} 512 & 0 \\ 0 & 512 \end{smallmatrix}\bigr)$
- Zerlegung: $\mathbf{M}_3 = \mathbf{J}_D \mathbf{J}_Y \mathbf{J}_Y \mathbf{J}_X \mathbf{N}$ bzw. $\mathbf{M}_1 = \mathbf{J}_Y \mathbf{J}_Y^+ \mathbf{J}_Y \mathbf{J}_Y \mathbf{J}_X \mathbf{N}'$

R. Bergmann

Zusammenfassung

- Muster $\mathcal{P}(\mathbf{M})$ verallgemeinern äquidistante Punkte
- auf $\mathcal{P}(\mathbf{M})$: FFT & schnelle Wavelet-Transformation
- Vergleich der Dirichlet- und de la Vallée Poussin-artige Wavelets
- Richtungspräferenz bei der Kantendetektion
- Mit den de la Vallée Poussin-Wavelets
 - gute Lokalisationseigenschaften
 - Scherungsmatrizen möglich, etwa $J = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$

Literatur

- [Be13] rb, The fast Fourier Transform and fast Wavelet Transform for Patterns on the Torus, erscheint im ACHA (2013).
- [LP10] D. Langemann, J. Prestin, *Multivariate periodic wavelet analysis*, ACHA 28 (2010), p. 46–66.
- [MS03] I. E. Maximenko, M. A. Skopina, *Multivariate periodic wavelets*, St. Petersbg. Math. J. 15 (2003), p. 165–190.
- [PT95] G. Plonka, M. Tasche, On the computation of periodic spline wavelets, ACHA 2 (1995), p. 1–14.
- [Se95] K. Selig, periodische Wavelet-Packets und eine gradoptimale Schauderbasis, Dissertation, Universität Rostock, 1998.

Literatur

- [Be13] rb, The fast Fourier Transform and fast Wavelet Transform for Patterns on the Torus, erscheint im ACHA (2013).
- [LP10] D. Langemann, J. Prestin, *Multivariate periodic wavelet analysis*, ACHA 28 (2010), p. 46–66.
- [MS03] I. E. Maximenko, M. A. Skopina, *Multivariate periodic wavelets*, St. Petersbg. Math. J. 15 (2003), p. 165–190.
- [PT95] G. Plonka, M. Tasche, On the computation of periodic spline wavelets, ACHA 2 (1995), p. 1–14.
- [Se95] K. Selig, periodische Wavelet-Packets und eine gradoptimale Schauderbasis, Dissertation, Universität Rostock, 1998.

Vielen Dank für die Aufmerksamkeit.