

Inpainting of Cyclic Data Using First and Second Order Differences

Ronny Bergmann Andreas Weinmann

Mathematical Image Processing and Data Analysis Group Department of Mathematics University of Kaiserslautern

January 15th, 2015

10th International Conference on Energy Minimizing Methods in Computer Vision and Pattern Recognition

Hong Kong

Contents

- 1 Introduction
- 2 Finite Differences
- 3 Second Order TV for Cyclic Data
- 4 Proximal Mappings and the CPP Algorithm
- 5 Examples
- 6 Conclusion

Introduction

employing the Rudin-Osher-Fatemi (ROF) functional [Osher, Rudin, Fatemi, 1992]

$$\sum_{i,j} (f_{i,j} - \mathbf{x}_{i,j})^2 + \lambda \sum_{i,j} |\nabla \mathbf{x}_{i,j}|$$

- f noisy image
- \[
 \]
 \[
 discrete gradient
 \]
- $\sum_{i,j} |\nabla x_{i,j}|$ discrete total variation (TV)
- regularization parameter $\lambda > 0$
- \Rightarrow edge-preserving
 - several higher order variational models avoid stair caising-effect

[Chambolle, Lions, 1997; Setzer, Steidl, 2008; Bredies, Kunisch, Pock, 2010; Papafitsoros, Schönlieb, 2014]

Recently

[Strekalovski, Cremers, 2013], [Lellmann et al., 2013], [Weinmann et al., 2013], [Bačák, 2013]

- TV denoising generalized to Riemannian manifolds
- several algorithms to find a minimizer x*, e.g. PPA
- convergence for PPA on CAT(0) spaces (does not include S¹)

Finite Differences on ${\mathbb R}$

Let $w = (w_j)_{j=1}^d \in \mathbb{R}^d \setminus \{0\}$ fulfill

$$\langle w, \mathbf{1}_d \rangle := \sum_{j=1}^d w_j = 0.$$

The finite difference operator is given by

$$\Delta(\mathbf{x}; \mathbf{w}) := \langle \mathbf{x}, \mathbf{w} \rangle, \quad \mathbf{x} \in \mathbb{R}^{d}.$$

This talk: $w \in \{b_1, b_2, b_{1,1}\}$ **b**₁ = (-1, 1) for f_x, f_y **b**₂ = (1, -2, 1) for f_{xx}, f_{yy} **b**_{1,1} = (1, -1, -1, 1) for f_{xy}

Cyclic data

$$p_i \in \mathbb{S}^1 := \{ q \in \mathbb{R}^2 : \|q\|_2 = 1 \} \iff x_i \in [-\pi, \pi)$$

Distances

Cyclic data

$$\boldsymbol{p}_i \in \mathbb{S}^1 := \{ \boldsymbol{q} \in \mathbb{R}^2 : \| \boldsymbol{q} \|_2 = 1 \} \iff \boldsymbol{x}_i \in [-\pi, \pi]$$

Finite Differences

Distances

- $= d(x; b_1) := \arccos\langle p_1, p_2 \rangle = |(x_2 x_1)_{2\pi}| = |(\langle x, b_1 \rangle)_{2\pi}| \quad (\text{arc length})$
- $d(x; b_2)$? Several unwrappings to compute $x_1 2x_2 + x_3$

Cyclic data

$$\boldsymbol{p}_i \in \mathbb{S}^1 := \{ \boldsymbol{q} \in \mathbb{R}^2 : \| \boldsymbol{q} \|_2 = 1 \} \iff \boldsymbol{x}_i \in [-\pi, \pi]$$

Finite Differences

Distances

- $d(x; b_1) := \arccos(p_1, p_2) = |(x_2 x_1)_{2\pi}| = |(\langle x, b_1 \rangle)_{2\pi}| \quad (\text{arc length})$
- $d(x; b_2)$? Several unwrappings to compute $x_1 2x_2 + x_3$

Cyclic data

$$\boldsymbol{p}_i \in \mathbb{S}^1 := \{ \boldsymbol{q} \in \mathbb{R}^2 : \| \boldsymbol{q} \|_2 = 1 \} \Longleftrightarrow \boldsymbol{x}_i \in [-\pi, \pi)$$

Finite Differences

Distances

- $= d(x; b_1) := \arccos(p_1, p_2) = |(x_2 x_1)_{2\pi}| = |(\langle x, b_1 \rangle)_{2\pi}| \quad (\text{arc length})$
- $d(x; b_2)$? Several unwrappings to compute $x_1 2x_2 + x_3$

Absolute Finite Differences of Cyclic Data

The cyclic absolute finite difference w.r.t. w

$$d(\mathbf{x}; \mathbf{w}) := \min_{\mu \in \mathbb{R}} \left| \Delta ([\mathbf{x} + \mu \mathbf{1}_d]_{2\pi}; \mathbf{w}) \right|, \quad \mathbf{x} \in [-\pi, \pi)^d$$

Einite Differences

- $[x]_{2\pi}$: element-wise mod 2π , except for $x_i = (2k + 1)\pi$: take both $\pm \pi$
- d(x; w) is shift invariant
- notation: $d_1 := d(\cdot; b_1), d_2 := d(\cdot; b_2)$ and $d_{1,1} := d(\cdot; b_{1,1})$
- minimization not necessary for $w \in \{b_1, b_2, b_{1,1}\}$: it holds

$$d(x;w) = |(\Delta(x,w))_{2\pi}|$$

this does not hold e.g. for $w = b_3 = (1, -3, 3, -1)$

Second Order TV for Cyclic Data

For given data $f = (f_i)_{i=1}^N \in (\mathbb{S}^1)^N$, $\alpha, \beta \ge 0$, compute

$$\arg\min_{\mathbf{x}\in[-\pi,\pi)^N} J(\mathbf{x}), \quad J(\mathbf{x}) := \sum_{i=1}^N d_1(f_i, \mathbf{x}_i)^2 + \alpha \operatorname{TV}_1(\mathbf{x}) + \beta \operatorname{TV}_2(\mathbf{x})$$

where

$$\mathsf{TV}_1(x) = \sum_{i=1}^{N-1} d_1(x_i, x_{i+1}), \quad \mathsf{TV}_2(x) = \sum_{i=2}^{N-1} d_2(x_{i-1}, x_i, x_{i+1}).$$

Similar: 2D model for data $f_{i,j} \in (\mathbb{S}^1)^{N,M}$

- vertical and horizontal first and second order differences
- mixed second order difference on each 2 × 2 submatrix of $x \in [-\pi, \pi)^{N,M} \Rightarrow$ additional term $\gamma \text{ TV}_{1,1}(x)$

Models for Inpainting

 \blacksquare image domain: $\Omega_0 \subset \mathbb{N}^2$ with $\Omega \subset \Omega_0$ unknown

data
$$f_{i,j}, (i,j) \in \overline{\Omega} = \Omega_0 ackslash \Omega$$

noiseless case

$$\begin{array}{l} \underset{x \in [-\pi, \pi)^{N,M}}{\operatorname{arg\,min}} \alpha \operatorname{TV}_{1}^{\Omega}(x) + \beta \operatorname{TV}_{2}^{\Omega}(x) + \gamma \operatorname{TV}_{1,1}^{\Omega}(x), \\ \text{subject to} \quad x_{i,j} = f_{i,j} \quad \text{for all} \quad (i,j) \in \overline{\Omega} \end{array}$$

noisy case

$$\arg\min_{\mathbf{x}\in[-\pi,\pi)^{N,M}}\sum_{(i,j)\in\overline{\Omega}} d_1(f_{i,i}, \mathbf{x}_{i,j})^2 + \alpha \operatorname{TV}_1(\mathbf{x}) + \beta \operatorname{TV}_2(\mathbf{x}) + \gamma \operatorname{TV}_{1,1}(\mathbf{x})$$

- iterative initialization: set $x_{i,j}$, $(i,j) \in \Omega$, by solving d(x; w) = 0, whenever all other data items are known [Almeida, Figueiredo, 2013]
- ⇒ "cold start initialization"

Introduction

Proximal Mappings on \mathbb{S}^1

[Rockafellar, 1976; Ferreira, Oliveira, 2002]

$$\operatorname{prox}_{\lambda\varphi}(g) = \operatorname*{arg\,min}_{x\in[-\pi,\pi)^d} \frac{1}{2} \sum_{i=1}^d d_1(g_i, x_i)^2 + \lambda\varphi(x), \quad \lambda > 0$$

Theorem: Proximal Mapping I [B., Laus, Steidl, Weinmann, 2014]

The unique minimizer x^* of $\text{prox}_{\lambda d_1(f, \cdot)^2}(g)$ is

$$\mathbf{x}^* = \left(\frac{\mathbf{g} + \lambda \mathbf{f}}{1 + \lambda} + \frac{\lambda}{1 + \lambda} \, \mathbf{2}\pi \, \mathbf{v}\right)_{2\pi}, \quad \mathbf{v} = \begin{cases} \mathbf{0} & \text{for } |\mathbf{g} - \mathbf{f}| \leq \pi, \\ \text{sgn}(\mathbf{g} - \mathbf{f}) & \text{for } |\mathbf{g} - \mathbf{f}| > \pi. \end{cases}$$

Introduction

Proximal Mappings on S¹

[Rockafellar, 1976; Ferreira, Oliveira, 2002]

$$\operatorname{prox}_{\lambda\varphi}(g) = \operatorname*{arg\,min}_{x\in[-\pi,\pi)^d} \frac{1}{2} \sum_{i=1}^{2} d_1(g_i, x_i)^2 + \lambda\varphi(x), \quad \lambda > 0$$

d

Theorem: Proximal Mapping I [B., Laus, Steidl, Weinmann, 2014]

The unique minimizer x^* of $\text{prox}_{\lambda d_1(f, \cdot)^2}(g)$ is

$$x^* = \left(\frac{g + \lambda f}{1 + \lambda} + \frac{\lambda}{1 + \lambda} 2\pi v\right)_{2\pi}, \quad v = \begin{cases} 0 & \text{for } |g - f| \le \pi, \\ \text{sgn}(g - f) & \text{for } |g - f| > \pi. \end{cases}$$

Theorem: Proximal Mapping II [B., Laus, Steidl, Weinmann, 2014]

The minimizers of $\text{prox}_{\lambda d(\,\cdot\,;w)}(g), w \in \{b_1, b_2, b_{1,1}\}$, are given by

$$\mathbf{x}^* = \left(\mathbf{g} - \mathsf{sgn}([\langle \mathbf{g}, \mathbf{w} \rangle]_{2\pi}) \min\left\{\lambda, \frac{|(\langle \mathbf{g}, \mathbf{w} \rangle)_{2\pi}|}{\|\mathbf{w}\|_2^2}\right\} \mathbf{w}\right)_{2\pi}$$

For $|(\langle g, w \rangle)_{2\pi}| = \pi$ there are two minimizers, otherwise it is unique.

The Cyclic Proximal Point Algorithm

Find $\arg\min_{\mathbf{x}} \varphi(\mathbf{x}), \varphi \colon \mathbb{R}^N \to \mathbb{R}$, convex, proper, lsc, by Picard iteration:

[Moreau, 1965; Rockafellar, 1976]

$$\mathbf{x}^{(k)} = \operatorname{prox}_{\lambda arphi}(\mathbf{x}^{(k-1)}), \quad k > 0$$

 \Rightarrow fast evaluation of prox $_{\lambda arphi}$ needed

For $\varphi = \sum_{i=1}^{c} \varphi_i$ use Cyclic Proximal Point Algorithm (CPPA) [Bertsekas, 2011]

$$x^{(k+rac{i+1}{c})} = \operatorname{prox}_{\lambda_k \varphi_i}(x^{(k+rac{i}{c})}), \quad i = 0, \dots, c-1, \ k > 0$$

converges to a minimizer if $\{\lambda_k\} \in \ell_2(\mathbb{Z}) \setminus \ell_1(\mathbb{Z})$.

For our model $J : (\mathbb{S}^1)^N \to \mathbb{R}$ we can prove convergence if additionally

- data f_i locally dense enough
- $\alpha, \beta(,\gamma)$ are sufficiently small

data
$$\frac{1}{2}\sum_{i=1}^N d_1(f_i,$$

 $d_1(f_i, x_i)^2 =: J_1(x)$

proximal mapping I (simultaneously elementwise)

Proximum & CPPA

first order differences

$$\alpha \operatorname{TV}_{1}(\mathbf{x}) = \alpha \sum_{i=1}^{N-1} d_{1}(\mathbf{x}_{i}, \mathbf{x}_{i+1})$$

second order differences

$$\beta \, \mathsf{TV}_2(x) = \beta \sum_{i=2}^{N-1} d_2(x_{i-1}, x_i, x_{i+1})$$

data
$$\frac{1}{2} \sum_{i=1}^{N} d_1(f_i, x_i)^2 =$$

 $=: J_1(x)$

proximal mapping I (simultaneously elementwise)

Proximum & CPPA

first order differences

$$\alpha \operatorname{TV}_{1}(x) = \sum_{l=0}^{1} \alpha \sum_{i=1}^{\left\lfloor \frac{N-1}{2} \right\rfloor} d_{1}(x_{2i-1+l}, x_{2i-l}) =: \sum_{l=0}^{1} J_{2+l}(x)$$

second order differences

$$\beta \, \mathsf{TV}_2(x) = \beta \sum_{i=2}^{N-1} d_2(x_{i-1}, x_i, x_{i+1})$$

data
$$\frac{1}{2} \sum_{i=1}^{N} d_1(f_i, x_i)^2 =: J_1(x)$$

proximal mapping I (simultaneously elementwise)

Proximum & CPPA

first order differences

$$\alpha \operatorname{TV}_{1}(x) = \sum_{l=0}^{1} \alpha \sum_{i=1}^{\lfloor \frac{N-1}{2} \rfloor} d_{1}(x_{2i-1+l}, x_{2i-l}) =: \sum_{l=0}^{1} J_{2+l}(x)$$

inner sum: distinct data \Rightarrow proximal mapping II with $w = b_1$ second order differences

$$\beta \, \mathsf{TV}_2(x) = \beta \sum_{i=2}^{N-1} d_2(x_{i-1}, x_i, x_{i+1})$$

• data
$$\frac{1}{2} \sum_{i=1}^{N} d_1(f_i, x_i)^2 =: J_1(x)$$

proximal mapping I (simultaneously elementwise)

Proximum & CPPA

first order differences

$$\alpha \operatorname{TV}_{1}(x) = \sum_{l=0}^{1} \alpha \sum_{i=1}^{\lfloor \frac{N-1}{2} \rfloor} d_{1}(x_{2i-1+l}, x_{2i-l}) =: \sum_{l=0}^{1} J_{2+l}(x)$$

inner sum: distinct data \Rightarrow proximal mapping II with $w = b_1$ second order differences

$$\beta \operatorname{TV}_{2}(x) = \sum_{l=0}^{2} \beta \sum_{i=1}^{\left\lfloor \frac{N-1}{3} \right\rfloor} d_{2}(x_{3i-2+l}, x_{3i-1+l}, x_{3i+l}) =: \sum_{l=0}^{2} J_{4+l}(x)$$

inner sum: distinct data \Rightarrow proximal mapping II with $w = b_2$

• data
$$\frac{1}{2} \sum_{i=1}^{N} d_1(f_i, x_i)^2 =: J_1(x)$$

proximal mapping I (simultaneously elementwise)

Proximum & CPPA

first order differences

$$\alpha \operatorname{TV}_{1}(x) = \sum_{l=0}^{1} \alpha \sum_{i=1}^{\lfloor \frac{N-1}{2} \rfloor} d_{1}(x_{2i-1+l}, x_{2i-l}) =: \sum_{l=0}^{1} J_{2+l}(x)$$

inner sum: distinct data \Rightarrow proximal mapping II with $w = b_1$ second order differences

$$\beta \operatorname{TV}_{2}(x) = \sum_{l=0}^{2} \beta \sum_{i=1}^{\left\lfloor \frac{N-1}{3} \right\rfloor} d_{2}(x_{3i-2+l}, x_{3i-1+l}, x_{3i+l}) =: \sum_{l=0}^{2} J_{4+l}(x)$$

inner sum: distinct data \Rightarrow proximal mapping II with $w = b_2$ $\Rightarrow J(x) = \sum_{l=1}^{6} J_l(x) \Rightarrow$ cycle length c = 6 (2D: c = 15)

Example: Inpainting

Example: Inpainting

Examples

Example: Inpainting

Original image (lost area in black).

Example: Inpainting

Original image (lost area in black).

Original image (lost area in black).

Original image (lost area in black).

Original image (lost area in black).

Conclusion

We have

- defined a model for second order differences of cyclic data
- derived a first and second order TV type functional
- extended the model to inpainting
- employed CPPA in order to minimize the functional
- simultaneous inpainting and denoising

Future work

- combined cyclic and linear vector space data (submitted)
- extension to other manifolds

Literature

- [1] M. Bačák. Computing medians and means in Hadamard spaces. SIAM J. Optim., 2014.
- [2] R. Bergmann, F. Laus, G. Steidl, and A. Weinmann. Second order differences of cyclic data and applications in variational denoising. *SIAM J. Imaging Sci.*, 2014.
- [3] R. Bergmann and A. Weinmann. A second order TV-type approach for inpainting and denoising higher dimensional combined cyclic and vector space data. *Preprint, ArXiv, submitted*, 2015.
- [4] E. Strekalovskiy and D. Cremers. Total cyclic variation and generalizations. *J. Math. Imaging Vis.*, 2013.
- [5] A. Weinmann, L. Demaret, and M. Storath. Total variation regularization for manifold-valued data. *SIAM J. Imaging Sci.*, 2014.

Literature

- [1] M. Bačák. Computing medians and means in Hadamard spaces. SIAM J. Optim., 2014.
- [2] R. Bergmann, F. Laus, G. Steidl, and A. Weinmann. Second order differences of cyclic data and applications in variational denoising. *SIAM J. Imaging Sci.*, 2014.
- [3] R. Bergmann and A. Weinmann. A second order TV-type approach for inpainting and denoising higher dimensional combined cyclic and vector space data. *Preprint, ArXiv, submitted*, 2015.
- [4] E. Strekalovskiy and D. Cremers. Total cyclic variation and generalizations. *J. Math. Imaging Vis.*, 2013.
- [5] A. Weinmann, L. Demaret, and M. Storath. Total variation regularization for manifold-valued data. *SIAM J. Imaging Sci.*, 2014.

Thank you for your attention.