A Variational Model for Data Fitting on Manifolds by Minimizing the Acceleration of a Bézier Curve

Ronny Bergmanna

Technische Universität Chemnitz

Institutsseminar, Institut für Numerische Mathematik, TU Dresden,

Dresden, November 27, 2018

[^0]
Moin.

1. Riemannian Manifolds \& Optimization
2. Data Fitting on Riemannian Manifolds
3. Bézier Curves and Generalized Bézier Curves
4. Discretized Acceleration of a Bézier Curve
5. Gradient Descent on a Manifold
6. Numerical Examples

An m-dimensional Riemannian Manifold \mathcal{M}

A d-dimensional Riemannian manifold can be informally defined as a set \mathcal{M} covered with a 'suitable' collection of charts, that identify subsets of \mathcal{M} with open subsets of \mathbb{R}^{d} and a continously varying inner product on the tangential spaces.

An m-dimensional Riemannian Manifold \mathcal{M}

Geodesic $g(\cdot ; x, y$) shortest path (on \mathcal{M}) between $x, y \in \mathcal{M}$ Tangent space $\mathrm{T}_{x} \mathcal{M}$ at x, with inner product $\langle\cdot, \cdot\rangle_{x}$ Logarithmic map $\log _{x} y=\dot{g}(0 ; x, y)$ "speed towards y " Exponential map $\exp _{x} \xi_{x}=g(1)$, where $g(0)=x, \dot{g}(0)=\xi_{x}$ Parallel transport $\mathrm{PT}_{x \rightarrow y}(\nu)$ of $\nu \in \mathrm{T}_{x} \mathcal{M}$ along $g(\cdot ; x, y)$

Optimization on Manifolds

Let \mathcal{N} be a Riemannian manifold and $E: \mathcal{N} \rightarrow \mathbb{R}$.
We aim to solve

$$
\underset{x \in \mathcal{N}}{\operatorname{argmin}} E(x)
$$

- often: product manifold $\mathcal{N}=\mathcal{M}^{n}$
- for $n \in \mathbb{N}^{2}$: manifold-valued image processing
\Rightarrow highdimensional problem
- locally: convexity defined via geodesics

Variational Methods on Manifolds

Variational methods model a trade-off between staying close to the data and minimizing a certain property

$$
E(x)=D(x ; f)+\alpha R(x)
$$

- $\alpha>0$ is a weight
- $f \in \mathcal{N}$ is given Data
- data or similarity term $D(x ; f)$
- regularizer / prior $R(x)$

Differential and Gradient

The differential $D_{x} f=D f: T \mathcal{M} \rightarrow \mathbb{R}$ of a real-valued function $f: \mathcal{M} \rightarrow \mathbb{R}$ is the push-forward of f.

Intuition: Given $x \in \mathcal{M}$ and $\xi \in T_{x} \mathcal{M}$, then $D f(x)[\xi]$ is the directional derivative of f.

The gradient $\nabla f: \mathcal{M} \rightarrow T \mathcal{M}$ is the tangent vector fulfilling

$$
\left\langle\nabla_{\mathcal{M}} f(x), \eta\right\rangle_{x}=D f(x)[\eta] \text { for all } \eta \in T_{x} \mathcal{M}
$$

\Rightarrow gradient descent (with e.g. Armijo's rule)

Data Fitting on Manifolds

Given data points d_{0}, \ldots, d_{n} on a Riemannian manifold \mathcal{M} and time points $t_{i} \in I$, find a "nice" curve $\gamma: I \rightarrow \mathcal{M}, \gamma \in \Gamma$, such that $\gamma\left(t_{i}\right)=d_{i}$ (interpolation) or $\gamma\left(t_{i}\right) \approx d_{i}$ (approximation).

- Γ set of geodesics \& approximation: geodesic regression
[Rentmeesters, '11; Fletcher, '13; Boumal '13]
- Γ Sobolev space of curves: Inifinite-dimensional problem
[Samir et. al.',12]
- Γ composite Bézier curves; LSs in tangent spaces
[Arnould et. al. '15; Gousenbourger, Massart, Absil, '18]
- Discretized curve, $\Gamma=\mathcal{M}^{N}$,

This talk

"nice" means minimal (discretized) acceleration ("as straight as possible") for Γ the set of composite Bézier curves.
In Euclidean space: Natural cubic splines as closed form solution.

(Euclidean) Bézier Curves

Definition

A Bézier curve β_{K} of degree $K \in \mathbb{N}_{0}$ is a function
$\beta_{K}:[0,1] \rightarrow \mathbb{R}^{d}$ parametrized by control points $b_{0}, \ldots, b_{K} \in \mathbb{R}^{n}$ and defined by

$$
\beta_{K}\left(t ; b_{0}, \ldots, b_{K}\right):=\sum_{j=0}^{K} b_{j} B_{j, K}(t)
$$

[Berstein, 1912]
where $B_{j, K}=\binom{K}{j} t^{j}(1-t)^{K-j}$ are the Bernstein polynomials of degree K.

Evaluation via Casteljau's algorithm.

Illustration of de Casteljau's Algorithm

b_{1}
0
b_{2}
0
$\stackrel{\circ}{b_{0}}$
$\stackrel{\circ}{b_{3}}$
The set of control points $b_{0}, b_{1}, b_{2}, b_{3}$.

Illustration of de Casteljau's Algorithm

Evaluate line segments at $t=\frac{1}{4}$, obtain $x_{0}^{[1]}, x_{1}^{[1]}, x_{2}^{[1]}$.

Illustration of de Casteljau's Algorithm

$$
\stackrel{\circ}{b_{3}}
$$

Repeat evaluation for new line segments to obtain $x_{0}^{[2]}, x_{1}^{[2]}$.

Illustration of de Casteljau's Algorithm

$$
\stackrel{\circ}{b_{3}}
$$

Repeat for the last segment to obtain $\beta_{3}\left(\frac{1}{4} ; b_{0}, b_{1}, b_{2}, b_{3}\right)=x_{0}^{[3]}$.

Illustration of de Casteljau's Algorithm

Same procedure for evaluation of $\beta_{3}\left(\frac{1}{2} ; b_{0}, b_{1}, b_{2}, b_{3}\right)$.

Illustration of de Casteljau's Algorithm

Same procedure for evaluation of $\beta_{3}\left(\frac{3}{4} ; b_{0}, b_{1}, b_{2}, b_{3}\right)$.

Illustration of de Casteljau's Algorithm

Complete curve $\beta_{3}\left(t ; b_{0}, b_{1}, b_{2}, b_{3}\right)$.

Composite Bézier Curves

Definition

A composite Bezier curve $B:[0, n] \rightarrow \mathbb{R}^{d}$ is defined as

$$
B(t):= \begin{cases}\beta_{K}\left(t ; b_{0}^{0}, \ldots, b_{K}^{0}\right) & \text { if } t \in[0,1] \\ \beta_{K}\left(t-i ; b_{0}^{i}, \ldots, b_{K}^{i}\right), & \text { if } t \in(i, i+1], \quad i=1, \ldots, n-1\end{cases}
$$

Composite Bézier Curves

Definition

A composite Bezier curve $B:[0, n] \rightarrow \mathbb{R}^{d}$ is defined as
$B(t):= \begin{cases}\beta_{K}\left(t ; b_{0}^{0}, \ldots, b_{K}^{0}\right) & \text { if } t \in[0,1], \\ \beta_{K}\left(t-i ; b_{0}^{i}, \ldots, b_{K}^{i}\right), & \text { if } t \in(i, i+1], \quad i=1, \ldots, n-1 .\end{cases}$
Denote i th segment by $B_{i}(t)=\beta_{K}\left(t ; b_{0}^{i}, \ldots, b_{K}^{i}\right)$ and $p_{i}=b_{0}^{i}$.

Composite Bézier Curves

Definition

A composite Bezier curve $B:[0, n] \rightarrow \mathbb{R}^{d}$ is defined as
$B(t):= \begin{cases}\beta_{K}\left(t ; b_{0}^{0}, \ldots, b_{K}^{0}\right) & \text { if } t \in[0,1], \\ \beta_{K}\left(t-i ; b_{0}^{i}, \ldots, b_{K}^{i}\right), & \text { if } t \in(i, i+1], \quad i=1, \ldots, n-1 .\end{cases}$
Denote i th segment by $B_{i}(t)=\beta_{K}\left(t ; b_{0}^{i}, \ldots, b_{K}^{i}\right)$ and $p_{i}=b_{0}^{i}$.

- continuous iff $B_{i-1}(1)=B_{i}(0), i=1, \ldots, n-1$

$$
\Rightarrow b_{K}^{i-1}=b_{0}^{i}=p_{i}, i=1, \ldots, n-1
$$

- continuously differentiable eff $p_{i}=\frac{1}{2}\left(b_{K-1}^{i-1}+b_{1}^{i}\right)$

Bézier Curves on a Manifold

Definition.

Let \mathcal{M} be a Riemannian manifold and $b_{0}, \ldots, b_{K} \in \mathcal{M}, K \in \mathbb{N}$.
The (generalized) Bézier curve of degree $k, k \leq K$, is defined as

$$
\beta_{k}\left(t ; b_{0}, \ldots, b_{k}\right)=g\left(t ; \beta_{k-1}\left(t ; b_{0}, \ldots, b_{k-1}\right), \beta_{k-1}\left(t ; b_{1}, \ldots, b_{k}\right)\right),
$$

if $k>0$, and

$$
\beta_{0}\left(t ; b_{0}\right)=b_{0}
$$

Bézier Curves on a Manifold

Definition.

Let \mathcal{M} be a Riemannian manifold and $b_{0}, \ldots, b_{K} \in \mathcal{M}, K \in \mathbb{N}$.
The (generalized) Bézier curve of degree $k, k \leq K$, is defined as

$$
\beta_{k}\left(t ; b_{0}, \ldots, b_{k}\right)=g\left(t ; \beta_{k-1}\left(t ; b_{0}, \ldots, b_{k-1}\right), \beta_{k-1}\left(t ; b_{1}, \ldots, b_{k}\right)\right)
$$

if $k>0$, and

$$
\beta_{0}\left(t ; b_{0}\right)=b_{0} .
$$

- Bézier curves $\beta_{1}\left(t ; b_{0}, b_{1}\right)=g\left(t ; b_{0}, b_{1}\right)$ are geodesics.
- composite Bézier curves $B:[0, n] \rightarrow \mathcal{M}$ completely analogue (using geodesics for line segments)

Bézier Curves on a Manifold

Definition.

Let \mathcal{M} be a Riemannian manifold and $b_{0}, \ldots, b_{K} \in \mathcal{M}, K \in \mathbb{N}$.
The (generalized) Bézier curve of degree $k, k \leq K$, is defined as

$$
\beta_{k}\left(t ; b_{0}, \ldots, b_{k}\right)=g\left(t ; \beta_{k-1}\left(t ; b_{0}, \ldots, b_{k-1}\right), \beta_{k-1}\left(t ; b_{1}, \ldots, b_{k}\right)\right)
$$

if $k>0$, and

$$
\beta_{0}\left(t ; b_{0}\right)=b_{0}
$$

The Riemannian composite Bezier curve $B(t)$ is

- continuous iff $B_{i-1}(1)=B_{i}(0), i=1, \ldots, n-1$

$$
\Rightarrow b_{K}^{i-1}=b_{0}^{i}=: p_{i}, i=1, \ldots, n-1
$$

- continuously differentiable iff $p_{i}=g\left(\frac{1}{2} ; b_{K-1}^{i-1}, b_{1}^{i}\right)$

Illustration of a Composite Bézier Curve on the Sphere \mathbb{S}^{2}

The directions, e.g. $\log _{p_{j}} b_{j}^{1}$, are now tangent vectors.

A Variational Model for Data Fitting

Let $d_{0}, \ldots, d_{n} \in \mathcal{M}$. A model for data fitting reads

$$
E(B)=\frac{\lambda}{2} \sum_{k=0}^{n} d_{\mathcal{M}}^{2}\left(B(k), d_{k}\right)+\int_{0}^{n}\left\|\frac{D^{2} B(t)}{\mathrm{d} t^{2}}\right\|_{B(t)}^{2}, \mathrm{~d} t \quad \lambda>0
$$

where $B \in \Gamma$ is from the set of continuously differentiable composite Bezier curve of degree K with n segments.

- Goal: find minimizer $B^{*} \in \Gamma$
- finite dimensional optimization problem in the control points b_{j}^{i}, i.e. on \mathcal{M}^{L} with
- $L=n(K-1)+2$
- $\lambda \rightarrow \infty$ yields interpolation $\left(p_{k}=d_{k}\right) \Rightarrow L=n(K-2)+1$
- On $\mathcal{M}=\mathbb{R}^{m}$: closed form solution, natural (cubic) splines

Interlude: Second Order Differences on Manifolds

Second order difference:

$$
\mathrm{d}_{2}(x, y, z):=\min _{c \in \mathcal{C}_{x, z}} \mathrm{~d}_{\mathcal{M}}(c, y), \quad x, y, z \in \mathcal{M}
$$

$\mathcal{C}_{x, z}$ mid point(s) of geodesic(s) $g(\cdot ; x, z)$
$\frac{1}{2}\|x-2 y+z\|_{2}=\left\|\frac{1}{2}(x+z)-y\right\|_{2}$

Discretizing the Data Fitting Model

We discretize the absolute second order covariant derivative

$$
\int_{0}^{n}\left\|\frac{D^{2} B(t)}{\mathrm{d} t^{2}}\right\|_{\gamma(t)}^{2} \mathrm{~d} t \approx \sum_{k=1}^{N-1} \frac{\Delta_{s} d_{2}^{2}\left[B\left(s_{i-1}\right), B\left(s_{i}\right), B\left(s_{i+1}\right)\right]}{\Delta_{s}^{4}}
$$

on equidistant points s_{0}, \ldots, s_{N} with step size $\Delta_{s}=s_{1}-s_{0}$.
Evaluating $E(B)$ consists of evaluation of geodesics and squared (Riemannian) distances

- $(N+1) K$ geodesics to evaluate the Bézier segments
- N geodesics to evaluate the mid points
- N squared distances to obtain the second order absolute finite differences squared

Gradient and Chain Rule on a Manifold

The gradient $\nabla_{\mathcal{M}} f(x) \in T_{x} \mathcal{M}$ of $f: \mathcal{M} \rightarrow \mathbb{R}, x \in \mathcal{M}$, is defined as the tangent vector that fulfills

$$
\left\langle\nabla_{\mathcal{M}} f(x), \xi\right\rangle_{x}=D f(x)[\xi] \quad \text { for all } \quad \xi \in T_{x} \mathcal{M} .
$$

For a composition $F(x)=(g \circ h)(x)=g(h(x))$ of two functions $g, h: \mathcal{M} \rightarrow \mathcal{M}$ the chain rule reads for $x \in \mathcal{M}$ and $\xi \in T_{x} \mathcal{M}$ as

$$
D_{x} F[\xi]=D_{h(x)} g\left[D_{x} h[\xi]\right]
$$

where $D_{x} h[\xi] \in T_{h(x)} \mathcal{M}$ and $D_{x} F[\xi] \in T_{F(x)} \mathcal{M}$.

The Differential of a Geodesic w.r.t. its Start Point

The geodesic variation

$$
\Gamma_{g, \xi}(s, t):=\exp _{\gamma_{x, \xi}(s)}(t \zeta(s)), \quad s \in(-\varepsilon, \varepsilon), t \in[0,1], \varepsilon>0
$$

is used to define the Jacobi field $J_{g, \xi}(t)=\left.\frac{\partial}{\partial s} \Gamma_{g, \xi}(s, t)\right|_{s=0}$.

Then the differential reads $D_{x} g(t, \cdot, y)[\xi]=J_{g, \xi}(t)$.

Implementing Jacobi Fields on Symmetric Spaces

A manifold is symmetric if for every geodesic g and avery $x \in \mathcal{M}$ the mapping $g(t) \mapsto g(-t)$ is an isometry at least locally around $x=g(0)$.

Then

- one can diagonalize the curvature tensor R,
- let κ_{ℓ} denote its eigenvalues.
- let $\left\{\xi_{1}, \ldots, \xi_{m}\right\} \subseteq T_{x} \mathcal{M}$ be an ONB of eigenvalues with $\xi_{1}=\log _{x} y$.
- parallel transport $\Xi_{j}(t)=\mathrm{PT}_{x \rightarrow g(t ; x, y)} \xi_{j}, j=1, \ldots, m$

Implementing Jacobi Fields on Symmetric Spaces II

Decompose $\eta=\sum_{i=1}^{m} \eta_{\ell} \xi \ell$. Then

$$
D_{x} g(t ; x, y)[\eta]=J_{g, \eta}(t)=\sum_{\ell=1}^{m} \eta_{\ell} J_{g, \xi_{\ell}}(t)
$$

with

$$
J_{g, \xi_{\ell}}(t)= \begin{cases}\frac{\sinh \left(d_{g}(1-t) \sqrt{-\kappa_{\ell}}\right)}{\sinh \left(d_{g} \sqrt{-\kappa_{\ell}}\right)} \Xi_{\ell}(t) & \text { if } \kappa_{\ell}<0, \\ \frac{\sin \left(d_{g}(1-t) \sqrt{\kappa_{\ell}}\right)}{\sin \left(\sqrt{\kappa_{\ell}} d_{g}\right)} \Xi_{\ell}(t) & \text { if } \kappa_{\ell}>0 \\ (1-t) \Xi_{\ell}(t) & \text { if } \kappa_{\ell}=0\end{cases}
$$

Implementing the Gradient using adjoint Jacobi Fields.

The adjoint Jacobi fields

$$
J_{g, \cdot}^{*}(t): T_{g(t)} \mathcal{M} \rightarrow T_{x} \mathcal{M}
$$

are characterized by

$$
\left\langle J_{g, \xi}(t), \eta\right\rangle_{g(t)}=\left\langle\xi, J_{g, \eta}^{*}(t)\right\rangle_{x}, \text { for all } \xi \in T_{x} \mathcal{M}, \eta \in T_{g(t ; x, y)} \mathcal{M}
$$

- can be computed without extra efforts, i.e. the same ODEs occur.
\Rightarrow can be used to calculate the gradient
- the gradient of iterated evaluations of geodesics can be computed by composition of (adjoint) Jacobi fields

Gradient Descent on a Manifold

Let $\mathcal{N}=\mathcal{M}^{L}$ be the product manifold of \mathcal{M},
Input.

- $f: \mathcal{N} \rightarrow \mathbb{R}$,
- its gradient $\nabla_{\mathcal{N}} f$,
- initial data $x^{(0)}=b \in \mathcal{N}$
- step sizes $s_{k}>0, k \in \mathbb{N}$.

Output: $\hat{x} \in \mathcal{N}$
$k \leftarrow 0$
repeat

$$
\begin{aligned}
& x^{(k+1)} \leftarrow \exp _{x^{(k)}}\left(-s_{k} \nabla_{\mathcal{N}} f\left(x^{(k)}\right)\right) \\
& k \leftarrow k+1
\end{aligned}
$$

until a stopping criterion is reached
return $\hat{x}:=x^{(k)}$

Armijo Step Size Rule

Let $x=x^{(k)}$ be an iterate from the gradient descent algorithm, $\beta, \sigma \in(0,1), \alpha>0$.

Let m be the smallest positive integer such that

$$
f(x)-f\left(\exp _{x}\left(-\beta^{m} \alpha \nabla_{\mathcal{N}} f(x)\right)\right) \geq \sigma \beta^{m} \alpha\left\|\nabla_{\mathcal{N}} f(x)\right\|_{x}
$$

Set the step size $s_{k}:=\beta^{m} \alpha$.

Minimizing with Known Minimizer

Interpolation by Bézier Curves with Minimal Acceleration.

A comp. Bezier curve (black) and its mnimizer (blue).

Approximation by Bézier Curves with Minimal Acceleration.

In the following video λ is slowly decreased from 10 to 0.

The initial setting, $\lambda=10$.

Approximation by Bézier Curves with Minimal Acceleration.

In the following video λ is slowly decreased from 10 to 0.

Summary of the video.

Comparison to Previous Approach

This curve (dashed) is "too global" to be solved in a tangent space (dotted) correctly, while our method (blue) still works.

An Example of Rotations $\mathcal{M}=\mathrm{SO}(3)$

Initialization with approach from composite splines
[Gousenbourger, Massart, Absil, 2018]

Our method outperforms the approach of solving linear
systems in tangent spaces, but their approach can serve as an initialization.

Summary

- Data fitting on manifolds with Bézier curves minimizing their acceleration
- computed the gradient with respect to control points
- employed Jacobi fields and their adjoints.
- implemented within the MVIR toolbox (available soon)
ronnybergmann.net/mvirt/
- a Julia implementation in preparation (Manopt.jl)

Literature

M. Bačák, R. Bergmann, G. Steidl, and A. Weinmann. "A Second Order Non-Smooth Variational Model for Restoring Manifold-Valued Images". In: SIAM Journal on Scientific Computing 38.1 (2016), A567-A597. DOI: 10.1137/15M101988X.
R. Bergmann and P.-Y. Gousenbourger. "A variational model for data fitting on manifolds by minimizing the acceleration of a Bézier curve". In: Frontiers in Applied Mathematics and Statistics (2018). DOI: 10.3389/fams.2018.00059. arXiv: 1807.10090.

围 P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton University Press, 2008. DOI:
10.1515/9781400830244.
(P. P.-Y. Gousenbourger, E. Massart, and P.-A. Absil. "Data fitting on manifolds with composite Bézier-like curves and blended cubic splines". In: Journal of Mathematical Imaging and Vision (2018). accepted. DOI: 10.1007/s10851-018-0865-2.

[^0]: $a_{\text {joint }}$ work with P.-Y. Gousenbourger, UCLouvain, Louvain-la-Neuve, Belgium.

