A Variational Model for Data Fitting on Manifolds by Minimizing the Acceleration of a Bézier Curve

Ronny Bergmann^a

Technische Universität Chemnitz

Institutsseminar, Institut für Numerische Mathematik. TU Dresden.

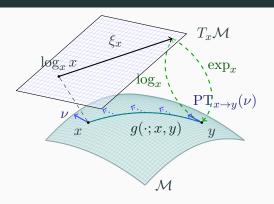
Dresden, November 27, 2018

^ajoint work with P.-Y. Gousenbourger, UCLouvain, Louvain-la-Neuve, Belgium.

Moin.

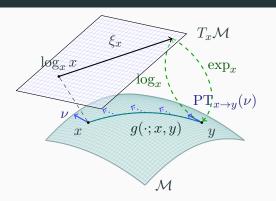
- 1. Riemannian Manifolds & Optimization
- 2. Data Fitting on Riemannian Manifolds
- 3. Bézier Curves and Generalized Bézier Curves
- 4. Discretized Acceleration of a Bézier Curve
- 5. Gradient Descent on a Manifold
- 6. Numerical Examples

An m-dimensional Riemannian Manifold ${\mathcal M}$



A d-dimensional Riemannian manifold can be informally defined as a set \mathcal{M} covered with a 'suitable' collection of charts, that identify subsets of \mathcal{M} with open subsets of \mathbb{R}^d and a continously varying inner product on the tangential spaces.

An m-dimensional Riemannian Manifold ${\mathcal M}$



Geodesic $g(\cdot;x,y)$ shortest path (on \mathcal{M}) between $x,y\in\mathcal{M}$ **Tangent space** $\mathrm{T}_x\mathcal{M}$ at x, with inner product $\langle\cdot,\cdot\rangle_x$ **Logarithmic map** $\log_x y = \dot{g}(0;x,y)$ "speed towards y" **Exponential map** $\exp_x \xi_x = g(1)$, where $g(0) = x, \dot{g}(0) = \xi_x$ **Parallel transport** $\mathrm{PT}_{x\to y}(\nu)$ of $\nu\in\mathrm{T}_x\mathcal{M}$ along $g(\cdot;x,y)$

Optimization on Manifolds

Let \mathcal{N} be a Riemannian manifold and $E \colon \mathcal{N} \to \mathbb{R}$.

We aim to solve

$$\operatorname*{argmin}_{x \in \mathcal{N}} E(x)$$

- · often: product manifold $\mathcal{N}=\mathcal{M}^n$
- for $n \in \mathbb{N}^2$: manifold-valued image processing
- ⇒ highdimensional problem
 - · locally: convexity defined via geodesics

Variational Methods on Manifolds

Variational methods model a trade-off between staying close to the data and minimizing a certain property

$$E(x) = D(x; f) + \alpha R(x)$$

- $\alpha > 0$ is a weight
- $f \in \mathcal{N}$ is given Data
- data or similarity term D(x; f)
- regularizer / prior R(x)

Differential and Gradient

The differential $D_x f = Df \colon T\mathcal{M} \to \mathbb{R}$ of a real-valued function $f \colon \mathcal{M} \to \mathbb{R}$ is the push-forward of f.

Intuition: Given $x \in \mathcal{M}$ and $\xi \in T_x \mathcal{M}$, then $Df(x)[\xi]$ is the directional derivative of f.

The gradient $\nabla f \colon \mathcal{M} \to T\mathcal{M}$ is the tangent vector fulfilling

$$\langle \nabla_{\mathcal{M}} f(x), \eta \rangle_x = Df(x)[\eta]$$
 for all $\eta \in T_x \mathcal{M}$

⇒ gradient descent (with e.g. Armijo's rule)

Data Fitting on Manifolds

Given data points d_0, \ldots, d_n on a Riemannian manifold \mathcal{M} and time points $t_i \in I$, find a "nice" curve $\gamma \colon I \to \mathcal{M}, \, \gamma \in \Gamma$, such that $\gamma(t_i) = d_i$ (interpolation) or $\gamma(t_i) \approx d_i$ (approximation).

- Γ set of geodesics & approximation: geodesic regression [Rentmeesters, '11; Fletcher, '13; Boumal '13]
- Γ Sobolev space of curves: Inifinite-dimensional problem [Samir et. al,'12]
- Γ composite Bézier curves; LSs in tangent spaces
 [Arnould et. al. '15; Gousenbourger, Massart, Absil, '18]
- Discretized curve, $\Gamma=\mathcal{M}^N$, [Boumal, Absil, '11]

This talk

"nice" means minimal (discretized) acceleration ("as straight as possible") for Γ the set of composite Bézier curves. In Euclidean space: Natural cubic splines as closed form solution.

(Euclidean) Bézier Curves

Definition

[Bézier, '62]

A Bézier curve β_K of degree $K \in \mathbb{N}_0$ is a function $\beta_K \colon [0,1] \to \mathbb{R}^d$ parametrized by control points $b_0, \ldots, b_K \in \mathbb{R}^n$ and defined by

$$\beta_K(t; b_0, \dots, b_K) := \sum_{j=0}^K b_j B_{j,K}(t),$$

[Bernstein, 1912]

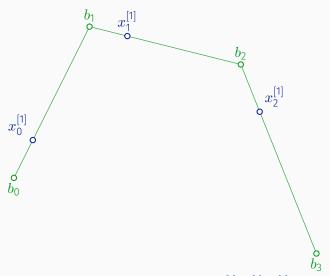
where $B_{j,K} = {K \choose j} t^j (1-t)^{K-j}$ are the Bernstein polynomials of degree K.

Evaluation via Casteljau's algorithm.

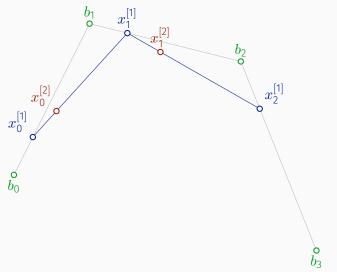
[de Casteljau, '59]

 b_3

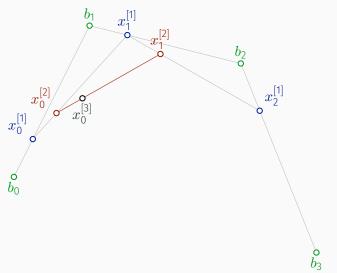
The set of control points b_0, b_1, b_2, b_3 .



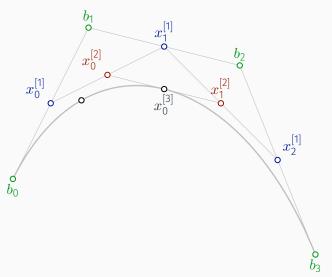
Evaluate line segments at $t=\frac{1}{4}$, obtain $x_0^{[1]},x_1^{[1]},x_2^{[1]}$.



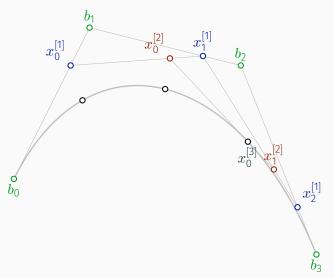
Repeat evaluation for new line segments to obtain $x_0^{[2]}, x_1^{[2]}$.



Repeat for the last segment to obtain $\beta_3(\frac{1}{4};b_0,b_1,b_2,b_3)=x_0^{[3]}$.



Same procedure for evaluation of $\beta_3(\frac{1}{2};b_0,b_1,b_2,b_3)$.



Same procedure for evaluation of $\beta_3(\frac{3}{4};b_0,b_1,b_2,b_3)$.



Complete curve $\beta_3(t; b_0, b_1, b_2, b_3)$.

Composite Bézier Curves

Definition

A composite Bezier curve $B : [0, n] \to \mathbb{R}^d$ is defined as

$$B(t) := \begin{cases} \beta_K(t; b_0^0, \dots, b_K^0) & \text{if } t \in [0, 1], \\ \beta_K(t - i; b_0^i, \dots, b_K^i), & \text{if } t \in (i, i + 1], \quad i = 1, \dots, n - 1. \end{cases}$$

9

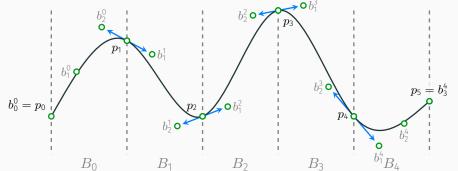
Composite Bézier Curves

Definition

A composite Bezier curve $B : [0, n] \to \mathbb{R}^d$ is defined as

$$B(t) := \begin{cases} \beta_K(t; b_0^0, \dots, b_K^0) & \text{if } t \in [0, 1], \\ \beta_K(t - i; b_0^i, \dots, b_K^i), & \text{if } t \in (i, i + 1], \quad i = 1, \dots, n - 1. \end{cases}$$

Denote *i*th segment by $B_i(t) = \beta_K(t; b_0^i, \dots, b_K^i)$ and $p_i = b_0^i$.



9

Composite Bézier Curves

Definition

A composite Bezier curve $B : [0, n] \to \mathbb{R}^d$ is defined as

$$B(t) := \begin{cases} \beta_K(t; b_0^0, \dots, b_K^0) & \text{if } t \in [0, 1], \\ \beta_K(t - i; b_0^i, \dots, b_K^i), & \text{if } t \in (i, i + 1], \quad i = 1, \dots, n - 1. \end{cases}$$

Denote *i*th segment by $B_i(t) = \beta_K(t; b_0^i, \dots, b_K^i)$ and $p_i = b_0^i$.

- continuous iff $B_{i-1}(1) = B_i(0), i = 1, ..., n-1$ $\Rightarrow b_K^{i-1} = b_0^i = p_i, i = 1, ..., n-1$
- continuously differentiable iff $p_i = \frac{1}{2}(b_{K-1}^{i-1} + b_1^i)$

Bézier Curves on a Manifold

Definition.

[Park, Ravani, 1995; Popiel, Noakes, 2007] Let \mathcal{M} be a Riemannian manifold and $b_0, \ldots, b_K \in \mathcal{M}, K \in \mathbb{N}$.

The (generalized) Bézier curve of degree k, k < K, is defined as

$$\beta_k(t; b_0, \dots, b_k) = g(t; \beta_{k-1}(t; b_0, \dots, b_{k-1}), \beta_{k-1}(t; b_1, \dots, b_k)),$$

if k > 0, and

$$\beta_0(t;b_0)=b_0.$$

Bézier Curves on a Manifold

Definition.

[Park, Ravani, 1995; Popiel, Noakes, 2007] Let \mathcal{M} be a Riemannian manifold and $b_0, \ldots, b_K \in \mathcal{M}, K \in \mathbb{N}$.

The (generalized) Bézier curve of degree k, k < K, is defined as

$$\beta_k(t; b_0, \dots, b_k) = g(t; \beta_{k-1}(t; b_0, \dots, b_{k-1}), \beta_{k-1}(t; b_1, \dots, b_k)),$$

if k > 0, and

$$\beta_0(t;b_0)=b_0.$$

- Bézier curves $\beta_1(t;b_0,b_1)=g(t;b_0,b_1)$ are geodesics.
- composite Bézier curves $B: [0,n] \to \mathcal{M}$ completely analogue (using geodesics for line segments)

Bézier Curves on a Manifold

Definition.

[Park, Ravani, 1995; Popiel, Noakes, 2007] Let \mathcal{M} be a Riemannian manifold and $b_0, \ldots, b_K \in \mathcal{M}, K \in \mathbb{N}$.

The (generalized) Bézier curve of degree k, k < K, is defined as

$$\beta_k(t; b_0, \dots, b_k) = g(t; \beta_{k-1}(t; b_0, \dots, b_{k-1}), \beta_{k-1}(t; b_1, \dots, b_k)),$$

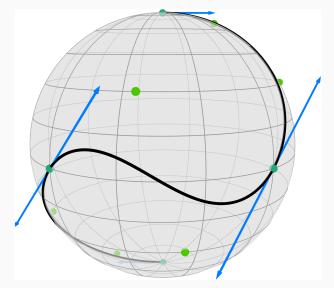
if k > 0, and

$$\beta_0(t;b_0)=b_0.$$

The Riemannian composite Bezier curve B(t) is

- continuous iff $B_{i-1}(1) = B_i(0), i = 1, ..., n-1$ $\Rightarrow b_{K}^{i-1} = b_{0}^{i} =: p_{i}, i = 1, \dots, n-1$
- continuously differentiable iff $p_i = g(\frac{1}{2}; b_{K-1}^{i-1}, b_1^i)$

Illustration of a Composite Bézier Curve on the Sphere \mathbb{S}^2



The directions, e.g. $\log_{p_j} b_j^1$, are now tangent vectors.

A Variational Model for Data Fitting

Let $d_0, \ldots, d_n \in \mathcal{M}$. A model for data fitting reads

$$E(B) = \frac{\lambda}{2} \sum_{k=0}^{n} d_{\mathcal{M}}^{2}(B(k), d_{k}) + \int_{0}^{n} \left\| \frac{D^{2}B(t)}{dt^{2}} \right\|_{B(t)}^{2}, dt \qquad \lambda > 0,$$

where $B \in \Gamma$ is from the set of continuously differentiable composite Bezier curve of degree K with n segments.

- Goal: find minimizer $B^* \in \Gamma$
- finite dimensional optimization problem in the control points b_i^i , i.e. on \mathcal{M}^L with
 - · L = n(K 1) + 2
 - $\lambda \to \infty$ yields interpolation $(p_k = d_k) \Rightarrow L = n(K 2) + 1$
- · On $\mathcal{M} = \mathbb{R}^m$: closed form solution, natural (cubic) splines

Interlude: Second Order Differences on Manifolds

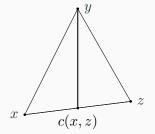
Second order difference:

[RB et al., 2014; RB, Weinmann, 2016; Bačák et al., 2016]

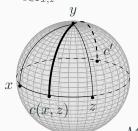
$$d_2(x, y, z) := \min_{c \in \mathcal{C}_{x, z}} d_{\mathcal{M}}(c, y), \quad x, y, z \in \mathcal{M},$$

 $C_{x,z}$ mid point(s) of geodesic(s) $g(\cdot; x, z)$

$$\frac{1}{2}||x-2y+z||_2 = ||\frac{1}{2}(x+z) - y||_2$$



$$\min_{c \in \mathcal{C}_{x,z}} d_{\mathcal{M}}(c,y)$$



 $\mathcal{M}=\mathbb{S}^2$

Discretizing the Data Fitting Model

We discretize the absolute second order covariant derivative

$$\int_0^n \left\| \frac{D^2 B(t)}{\mathrm{d}t^2} \right\|_{\gamma(t)}^2 \mathrm{d}t \approx \sum_{k=1}^{N-1} \frac{\Delta_s d_2^2 [B(s_{i-1}), B(s_i), B(s_{i+1})]}{\Delta_s^4}.$$

on equidistant points s_0, \ldots, s_N with step size $\Delta_s = s_1 - s_0$.

Evaluating E(B) consists of evaluation of geodesics and squared (Riemannian) distances

- (N+1)K geodesics to evaluate the Bézier segments
- \cdot N geodesics to evaluate the mid points
- $\cdot \, N$ squared distances to obtain the second order absolute finite differences squared

Gradient and Chain Rule on a Manifold

The gradient $\nabla_{\mathcal{M}} f(x) \in T_x \mathcal{M}$ of $f : \mathcal{M} \to \mathbb{R}$, $x \in \mathcal{M}$, is defined as the tangent vector that fulfills

$$\langle \nabla_{\mathcal{M}} f(x), \xi \rangle_x = Df(x)[\xi]$$
 for all $\xi \in T_x \mathcal{M}$.

For a composition $F(x)=(g\circ h)(x)=g(h(x))$ of two functions $g,h\colon \mathcal{M}\to \mathcal{M}$ the chain rule reads for $x\in \mathcal{M}$ and $\xi\in T_x\mathcal{M}$ as

$$D_x F[\xi] = D_{h(x)} g [D_x h[\xi]],$$

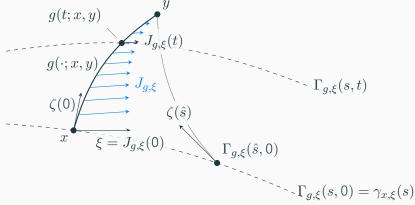
where $D_x h[\xi] \in T_{h(x)} \mathcal{M}$ and $D_x F[\xi] \in T_{F(x)} \mathcal{M}$.

The Differential of a Geodesic w.r.t. its Start Point

The geodesic variation

$$\Gamma_{g,\xi}(s,t) := \exp_{\gamma_{x,\xi}(s)}(t\zeta(s)), \qquad s \in (-\varepsilon,\varepsilon), \ t \in [0,1], \varepsilon > 0.$$

is used to define the Jacobi field $J_{g,\xi}(t)=rac{\partial}{\partial s}\Gamma_{g,\xi}(s,t)|_{s=0}.$



Then the differential reads $D_x g(t, \cdot, y)[\xi] = J_{g,\xi}(t)$.

Implementing Jacobi Fields on Symmetric Spaces

A manifold is symmetric if for every geodesic g and avery $x \in \mathcal{M}$ the mapping $g(t) \mapsto g(-t)$ is an isometry at least locally around x = g(0).

Then

- \cdot one can diagonalize the curvature tensor R,
- let κ_{ℓ} denote its eigenvalues.
- let $\{\xi_1, \dots, \xi_m\} \subseteq T_x \mathcal{M}$ be an ONB of eigenvalues with $\xi_1 = \log_x y$.
- · parallel transport $\Xi_j(t) = \operatorname{PT}_{x \to g(t;x,y)} \xi_j$, $j = 1, \dots, m$

Implementing Jacobi Fields on Symmetric Spaces II

Decompose
$$\eta = \sum_{i=1}^m \eta_\ell \xi \ell$$
. Then

$$D_x g(t; x, y)[\eta] = J_{g,\eta}(t) = \sum_{\ell=1}^m \eta_\ell J_{g,\xi_\ell}(t),$$

with

$$J_{g,\xi_{\ell}}(t) = \begin{cases} \frac{\sinh\left(d_{g}(1-t)\sqrt{-\kappa_{\ell}}\right)}{\sinh(d_{g}\sqrt{-\kappa_{\ell}})} \Xi_{\ell}(t) & \text{if } \kappa_{\ell} < 0, \\ \frac{\sin\left(d_{g}(1-t)\sqrt{\kappa_{\ell}}\right)}{\sin(\sqrt{\kappa_{\ell}}d_{g})} \Xi_{\ell}(t) & \text{if } \kappa_{\ell} > 0, \\ (1-t)\Xi_{\ell}(t) & \text{if } \kappa_{\ell} = 0. \end{cases}$$

Implementing the Gradient using adjoint Jacobi Fields.

The adjoint Jacobi fields

$$J_{g,\cdot}^*(t)\colon T_{g(t)}\mathcal{M}\to T_x\mathcal{M}$$

are characterized by

$$\langle J_{g,\xi}(t),\eta\rangle_{g(t)}=\langle \xi,J_{g,\eta}^*(t)\rangle_x, \ \text{ for all } \xi\in T_x\mathcal{M},\eta\in T_{g(t;x,y)}\mathcal{M}.$$

- can be computed without extra efforts, i.e. the same ODEs occur.
- ⇒ can be used to calculate the gradient
 - the gradient of iterated evaluations of geodesics can be computed by composition of (adjoint) Jacobi fields

Gradient Descent on a Manifold

Let $\mathcal{N} = \mathcal{M}^L$ be the product manifold of \mathcal{M} ,

Input.

- $f: \mathcal{N} \to \mathbb{R}$
- its gradient $\nabla_{\mathcal{N}} f$,
- initial data $x^{(0)} = b \in \mathcal{N}$
- step sizes $s_k > 0, k \in \mathbb{N}$.

Output: $\hat{x} \in \mathcal{N}$

$$k \leftarrow 0$$

repeat

$$x^{(k+1)} \leftarrow \exp_{x^{(k)}} \left(-s_k \nabla_{\mathcal{N}} f(x^{(k)}) \right)$$

$$k \leftarrow k + 1$$

until a stopping criterion is reached

return
$$\hat{x} \coloneqq x^{(k)}$$

Armijo Step Size Rule

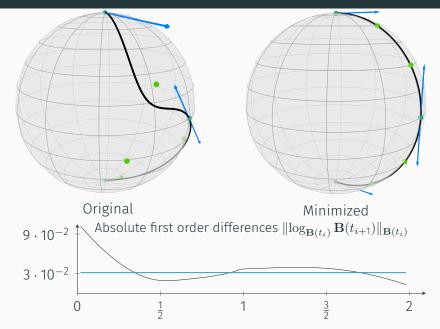
Let $x=x^{(k)}$ be an iterate from the gradient descent algorithm, $\beta, \sigma \in (0,1), \alpha > 0$.

Let m be the smallest positive integer such that

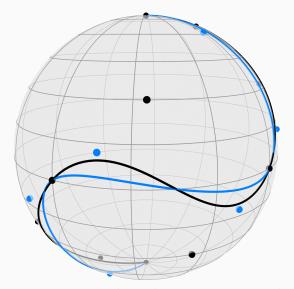
$$f(x) - f(\exp_x(-\beta^m \alpha \nabla_{\mathcal{N}} f(x))) \ge \sigma \beta^m \alpha \|\nabla_{\mathcal{N}} f(x)\|_x$$

Set the step size $s_k := \beta^m \alpha$.

Minimizing with Known Minimizer



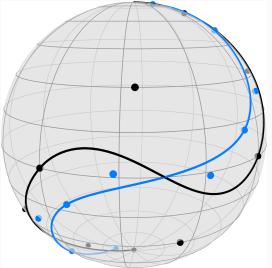
Interpolation by Bézier Curves with Minimal Acceleration.



A comp. Bezier curve (black) and its mnimizer (blue).

Approximation by Bézier Curves with Minimal Acceleration.

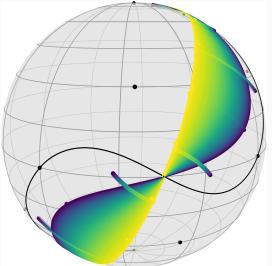
In the following video λ is slowly decreased from 10 to 0.



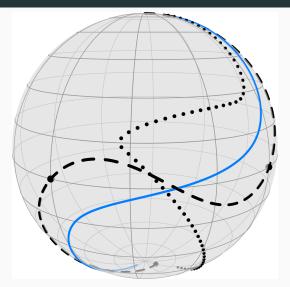
The initial setting, $\lambda = 10$.

Approximation by Bézier Curves with Minimal Acceleration.

In the following video λ is slowly decreased from 10 to 0.



Summary of the video.



This curve (dashed) is "too global" to be solved in a tangent space (dotted) correctly, while our method (blue) still works.

An Example of Rotations $\mathcal{M} = SO(3)$

Initialization with approach from composite splines

Our method outperforms the approach of solving linear systems in tangent spaces, but their approach can serve as an initialization.

Summary

- Data fitting on manifolds with Bézier curves minimizing their acceleration
- computed the gradient with respect to control points
- · employed Jacobi fields and their adjoints.
- implemented within the MVIR toolbox (available soon)
 ronnybergmann.net/mvirt/
- · a Julia implementation in preparation (Manopt.jl)

Literature

M. Bačák, R. Bergmann, G. Steidl, and A. Weinmann. "A Second Order Non-Smooth Variational Model for Restoring Manifold-Valued Images". In: SIAM Journal on Scientific Computing 38.1 (2016), A567–A597. DOI: 10.1137/15M101988X.

R. Bergmann and P.-Y. Gousenbourger. "A variational model for data fitting on manifolds by minimizing the acceleration of a Bézier curve". In: Frontiers in Applied Mathematics and Statistics (2018). DOI: 10.3389/fams.2018.00059. arXiv: 1807.10090.

P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton University Press, 2008. DOI: 10.1515/9781400830244.

P.-Y. Gousenbourger, E. Massart, and P.-A. Absil. "Data fitting on manifolds with composite Bézier-like curves and blended cubic splines". In: Journal of Mathematical Imaging and Vision (2018). accepted. DOI: 10.1007/s10851-018-0865-2.