The Graph Infinity-Laplacian for Manifold-valued Data

Ronny Bergmann¹, Daniel Tenbrinck²

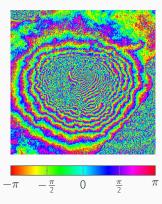
¹TU Kaiserslautern, ²WWU Münster

S21 Mathematical Signal and Image Processing, GAMM 2018, Munich, March 22, 2017

Manifold-valued image processing

New data aquisition modalities ⇒ non-Euclidean range of data

- Interferometric synthetic aperture radar (InSAR)
- · Surface normals
- Diffusion tensors in magnetic resonance imaging (DT-MRI)
- Electron backscattered diffraction (EBSD)
- Directional data: wind, flow, GPS,...

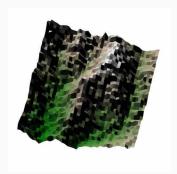


InSAR data of Mt. Vesuvius [Rocca, Prati, Guarnieri 1997]

phase valued data, \mathbb{S}^1

New data aquisition modalities ⇒ non-Euclidean range of data

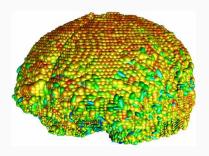
- Interferometric synthetic aperture radar (InSAR)
- · Surface normals
- Diffusion tensors in magnetic resonance imaging (DT-MRI)
- Electron backscattered diffraction (EBSD)
- Directional data: wind, flow, GPS,...



National elevation dataset [Gesch, Evans, Mauck, 2009] directional data, \mathbb{S}^2

New data aquisition modalities ⇒ non-Euclidean range of data

- Interferometric synthetic aperture radar (InSAR)
- · Surface normals
- Diffusion tensors in magnetic resonance imaging (DT-MRI)
- Electron backscattered diffraction (EBSD)
- Directional data: wind, flow, GPS,...

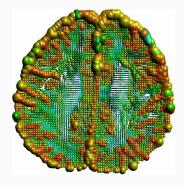


the Camino data set http://cmic.cs.ucl.ac.uk/camino

sym. pos. def. Matrices, $\mathcal{P}(3)$

New data aquisition modalities ⇒ non-Euclidean range of data

- Interferometric synthetic aperture radar (InSAR)
- · Surface normals
- Diffusion tensors in magnetic resonance imaging (DT-MRI)
- Electron backscattered diffraction (EBSD)
- Directional data: wind, flow, GPS,...



Slice # 28 from the Camino data set http://cmic.cs.ucl.ac.uk/camino

sym. pos. def. Matrices, $\mathcal{P}(3)$

New data aquisition modalities ⇒ non-Euclidean range of data

- Interferometric synthetic aperture radar (InSAR)
- · Surface normals
- Diffusion tensors in magnetic resonance imaging (DT-MRI)
- Electron backscattered diffraction (EBSD)
- Directional data: wind, flow, GPS,...

EBSD example from the MTEX toolbox [Bachmann, Hielscher, since 2005]

rotations (mod. symmetry), SO(3)/S.

New data aquisition modalities ⇒ non-Euclidean range of data

- Interferometric synthetic aperture radar (InSAR)
- · Surface normals
- Diffusion tensors in magnetic resonance imaging (DT-MRI)
- Electron backscattered diffraction (EBSD)
- Directional data: wind, flow, GPS,...

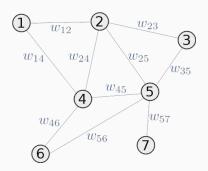
Common properties

- The values lie on a Riemannian manifold
- tasks from "classical" image processing
- · e.g. inpainting

1

The real-valued graph Laplacian

Finite weighted graphs



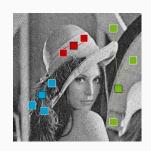
A finite weighted graph G = (V, E, w) consists of

- \cdot a finite set of nodes V
- a finite set of directed edges $E \subset V \times V$
- a (symmetric) weight function $w: V \times V \to \mathbb{R}^+$,

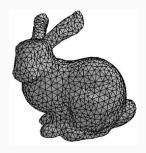
$$w(u,v) = 0$$
 for $v \not\sim u$.

Euclidean graph framework

Application data on



a nonlocal neighborhood



a surface



Source: Wikipedia a social network graph

is represented by a vertex function $f \colon V \to \mathbb{R}^m$

"Anything can be modeled as a graph"

The real-valued ∞ -Laplacian

Let $\Omega \subset \mathbb{R}^d$ be a bounded, open set and $f \colon \Omega \to \mathbb{R}$ smooth.

The infinity Laplacian $\Delta_{\infty}f$ in $x\in\Omega$ is defined as [Crandall, Evans, Gariepy 'o1]

$$\Delta_{\infty} f(x) = \sum_{j=1}^{d} \sum_{k=1}^{d} \frac{\partial f}{\partial x_j} \frac{\partial f}{\partial x_k} \frac{\partial^2 f}{\partial x_j x_k}(x).$$

Applications in image interpolation and (stucture) inpainting.

[Caselles, Morel, Sbert '98]

A min-max discretization

Based on a simple approximation by min- and max-values in a neighborhood [Obermann, '04]

$$\Delta_{\infty} f(x) \; = \; \frac{1}{r^2} \left(\min_{y \in B_r(x)} f(y) + \max_{y \in B_r(x)} f(y) - 2f(x) \right) \, + \, \mathcal{O}(r^2).$$

a real-valued graph-based variant reads

[Elmoataz, Desquensnes, Lakhdari '14]

$$\Delta_{\infty} f(u) = ||\nabla^{+} f(u)||_{\infty} - ||\nabla^{-} f(u)||_{\infty}$$

$$= \max_{v \sim u} |\min(\sqrt{w(u, v)}(f(v) - f(u)), 0)|$$

$$- \max_{v \sim u} |\max(\sqrt{w(u, v)}(f(v) - f(u)), 0)|$$

Connection to AML extensions

Observation

[Aronsson '67; Jensen '93]

Any (unique) viscosity solution f^* of the Dirichlet problem

$$\begin{cases} -\Delta_{\infty} f(x) = 0, & \text{for } x \in \Omega, \\ f(x) = \varphi(x), & \text{for } x \in \partial \Omega, \end{cases}$$

is an absolutely minimizing Lipschitz extension (AML) of φ , i.e.,

$$f^*(x) = g(x) \text{ for } x \in \partial \Sigma \Rightarrow ||Df^*||_{L^{\infty}(\Sigma)} \le ||Dg||_{L^{\infty}(\Sigma)},$$

for every open, bounded subset $\Sigma\subset\Omega$ and every $g\in C(\overline{\Sigma})$

Connection to AML extensions

Observation

[Aronsson '67; Jensen '93]

Any (unique) viscosity solution f^* of the Dirichlet problem

$$\begin{cases} -\Delta_{\infty} f(x) &= 0, & \text{ for } x \in \Omega, \\ f(x) &= \varphi(x), & \text{ for } x \in \partial \Omega, \end{cases}$$

is an absolutely minimizing Lipschitz extension (AML) of φ , i.e.,

$$f^*(x) \ = \ g(x) \ \text{ for } x \in \partial \Sigma \ \Rightarrow \ ||Df^*||_{L^\infty(\Sigma)} \le ||Dg||_{L^\infty(\Sigma)},$$

for every open, bounded subset $\Sigma\subset\Omega$ and every $g\in C(\overline{\Sigma})$

⇒ minimize locally the discrete Lipschitz constant [Obermann, '04]

$$\min_{f(x_0)} L(f(x_0)) \quad \text{with} \quad L(f(x_0)) = \max_{x_j \sim x_0} \frac{|f(x_0) - f(x_j)|}{\|x_0 - x_j\|}$$

Connection to AML extensions

Observation

[Aronsson '67; Jensen '93]

Any (unique) viscosity solution f^* of the Dirichlet problem

$$\begin{cases} -\Delta_{\infty} f(x) &= 0, & \text{ for } x \in \Omega, \\ f(x) &= \varphi(x), & \text{ for } x \in \partial \Omega, \end{cases}$$

is an absolutely minimizing Lipschitz extension (AML) of φ , i.e.,

$$f^*(x) \ = \ g(x) \ \text{ for } x \in \partial \Sigma \ \Rightarrow \ ||Df^*||_{L^\infty(\Sigma)} \le ||Dg||_{L^\infty(\Sigma)},$$

for every open, bounded subset $\Sigma\subset\Omega$ and every $g\in C(\overline{\Sigma})$

 \Rightarrow minimize locally the discrete Lipschitz constant [Obermann, '04]

$$\min_{f(x_0)} L(f(x_0)) \quad \text{with} \quad L(f(x_0)) = \max_{x_j \sim x_0} \frac{|f(x_0) - f(x_j)|}{\|x_0 - x_j\|}$$

 \Rightarrow consistent scheme for solving $-\Delta_{\infty}f=0$.

Constructing discrete Lipschitz extensions

On $\mathbb R$ the infinity Laplace operator can be approximated by

$$\Delta_{\infty} f(x_0) = \frac{1}{\|x_0 - x_j^*\| + \|x_0 - x_i^*\|} \left(\frac{f(x_0) - f(x_j^*)}{\|x_0 - x_j^*\|} + \frac{f(x_0) - f(x_i^*)}{\|x_0 - x_i^*\|} \right)$$

where the neighbors (x_i^*, x_j^*) are determined by

[Obermann, '04]

$$(x_i^*, x_j^*) = \underset{x_i, x_j \sim x_0}{\operatorname{argmax}} \frac{|f(x_i) - f(x_j)|}{\|x_0 - x_i\| + \|x_0 - x_j\|}$$

Constructing discrete Lipschitz extensions

On $\mathbb R$ the infinity Laplace operator can be approximated by

$$\Delta_{\infty} f(x_0) = \frac{1}{\|x_0 - x_j^*\| + \|x_0 - x_i^*\|} \left(\frac{f(x_0) - f(x_j^*)}{\|x_0 - x_j^*\|} + \frac{f(x_0) - f(x_i^*)}{\|x_0 - x_i^*\|} \right)$$

where the neighbors (x_i^*, x_j^*) are determined by

[Obermann, '04]

$$(x_i^*, x_j^*) = \underset{x_i, x_j \sim x_0}{\operatorname{argmax}} \frac{|(f(x_i) - f(x_0)) - (f(x_j) - f(x_0))|}{\|x_0 - x_i\| + \|x_0 - x_j\|}$$

Constructing discrete Lipschitz extensions

On \mathbb{R}^m the infinity Laplace operator can be approximated by

$$\Delta_{\infty} f(x_0) = \frac{1}{\|x_0 - x_j^*\| + \|x_0 - x_i^*\|} \left(\frac{f(x_0) - f(x_j^*)}{\|x_0 - x_j^*\|} + \frac{f(x_0) - f(x_i^*)}{\|x_0 - x_i^*\|} \right)$$

where the neighbors (x_i^*, x_i^*) are determined by

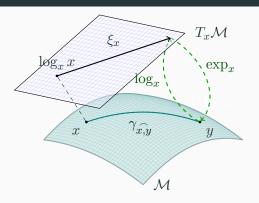
[Obermann, '04; RB, Tenbrinck, '17]

$$(x_i^*, x_j^*) = \underset{x_i, x_j \sim x_0}{\operatorname{argmax}} \frac{\|(f(x_i) - f(x_0)) - (f(x_j) - f(x_0))\|}{\|x_0 - x_i\| + \|x_0 - x_j\|}$$

The manifold-valued graph

Laplacian

Notations on a Riemannian manifold ${\mathcal M}$



geodesic $\gamma_{\widehat{x,y}}$ shortest path (on \mathcal{M}) connecting $x,y\in\mathcal{M}$. **tangential plane** $\mathrm{T}_x\mathcal{M}$ at x, $\mathrm{T}\mathcal{M}\coloneqq \cup_{x\in\mathcal{M}}\mathrm{T}_x\mathcal{M}$ **logarithmic map** $\log_x y=\dot{\gamma}_{\widehat{x,y}}(0)$, "velocity towards y" **exponential map** $\exp_x \xi_x=\gamma(1)$, where $\gamma(0)=x,\dot{\gamma}(0)=\xi_x$

Graph ∞ -Laplacian for manifold-valued data

We define the graph- ∞ -Laplace operator for manifold valued data $\Delta_{\infty}f$ in a vertex $u\in V$ as

$$\Delta_{\infty} f(u) \; \coloneqq \; \frac{\sqrt{w(u,v_1^*)} \log_{f(u)} f(v_1^*) \; + \; \sqrt{w(u,v_2^*)} \log_{f(u)} f(v_2^*)}{\sqrt{w(u,v_1^*)} \; + \; \sqrt{w(u,v_2^*)}},$$

where $v_1^*, v_2^* \in \mathcal{N}(u)$ maximize the discrete Lipschitz constant in the local tangent space $T_{f(u)}\mathcal{M}$ among all neighbors, i.e.,

$$\begin{aligned} &(v_1^*, v_2^*) \\ &= \underset{(v_1, v_2) \in \mathcal{N}^2(u)}{\operatorname{argmax}} \left\| \sqrt{w(u, v_1)} \log_{f(u)} f(v_1) - \sqrt{w(u, v_2)} \log_{f(u)} f(v_2) \right\|_{f(u)} \end{aligned}$$

Numerical iteration scheme

to solve

$$\begin{cases} \Delta_{\infty} f(u) = 0 & \text{for all } u \in U, \\ f(u) = g(u) & \text{for all } u \in V/U. \end{cases}$$

we introduce an artificial time dimension t, i.e.

$$\begin{cases} \frac{\partial f}{\partial t}(u,t) = \Delta_{\infty} f(u,t) & \text{for all } u \in U, \, t \in (0,\infty), \\ f(u,0) = f_0(u) & \text{for all } u \in U, \\ f(u,t) = g(u,t) & \text{for all } u \in V/U, t \in [0,\infty). \end{cases}$$

Numerical iteration scheme II

For any $u \in V$, $p \in \mathbb{R}^+ \cup \{\infty\}$, $\lambda \ge 0$, we aim to solve

$$0 \stackrel{!}{=} \Delta_p f(u) - \lambda \log_{f(u)} f_0(u) \in T_{f(u)} \mathcal{M}.$$

Algorithm. Forward difference or explicit scheme:

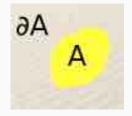
$$f_{n+1}(u) = \exp_{f_n(u)} \left(\Delta t \left(\Delta_p f_n(u) - \lambda \log_{f_n(u)} f_0(u) \right) \right)$$

! to meet CFL conditions: small Δt necessary

Numerical examples

Goal

Inpaint $A \subset V$ using information in $\partial A = V/A$.

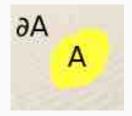


Goal

Inpaint $A \subset V$ using information in $\partial A = V/A$.

[Elmoataz, Toutain, Tenbrinck '16]

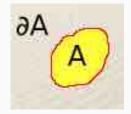
1. Build a graph using image patches and local neighbors:



Goal

Inpaint $A \subset V$ using information in $\partial A = V/A$.

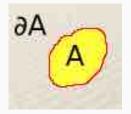
- 1. Build a graph using image patches and local neighbors:
 - → nonlocal relationships for vertices in border zone (red)
 - \rightarrow local connection for inner nodes in A



Goal

Inpaint $A \subset V$ using information in $\partial A = V/A$.

- 1. Build a graph using image patches and local neighbors:
 - → nonlocal relationships for vertices in border zone (red)
 - \rightarrow local connection for inner nodes in A
- 2. Solve $\Delta_{\infty}f(u)=$ 0 for all vertices $u\in A\subset V$



Goal

Inpaint $A \subset V$ using information in $\partial A = V/A$.

- 1. Build a graph using image patches and local neighbors:
 - \rightarrow nonlocal relationships for vertices in border zone
 - \rightarrow local connection for inner nodes in A
- 2. Solve $\Delta_{\infty} f(u) = 0$ for all vertices $u \in A \subset V$
- 3. Add border nodes to ∂A and repeat until $A = \emptyset$.

Goal

Inpaint $A \subset V$ using information in $\partial A = V/A$.

- 1. Build a graph using image patches and local neighbors:
 - \rightarrow nonlocal relationships for vertices in border zone
 - \rightarrow local connection for inner nodes in A
- 2. Solve $\Delta_{\infty} f(u) = 0$ for all vertices $u \in A \subset V$
- 3. Add border nodes to ∂A and repeat until $A = \emptyset$.

Goal

Inpaint $A \subset V$ using information in $\partial A = V/A$.

- 1. Build a graph using image patches and local neighbors:
 - \rightarrow nonlocal relationships for vertices in border zone
 - \rightarrow local connection for inner nodes in A
- 2. Solve $\Delta_{\infty}f(u)=0$ for all vertices $u\in A\subset V$
- 3. Add border nodes to ∂A and repeat until $A = \emptyset$.

Goal

Inpaint $A \subset V$ using information in $\partial A = V/A$.

- 1. Build a graph using image patches and local neighbors:
 - \rightarrow nonlocal relationships for vertices in border zone
 - \rightarrow local connection for inner nodes in A
- 2. Solve $\Delta_{\infty} f(u) = 0$ for all vertices $u \in A \subset V$
- 3. Add border nodes to ∂A and repeat until $A = \emptyset$.

Goal

Inpaint $A \subset V$ using information in $\partial A = V/A$.

- 1. Build a graph using image patches and local neighbors:
 - \rightarrow nonlocal relationships for vertices in border zone
 - \rightarrow local connection for inner nodes in A
- 2. Solve $\Delta_{\infty} f(u) = 0$ for all vertices $u \in A \subset V$
- 3. Add border nodes to ∂A and repeat until $A = \emptyset$.

Goal

Inpaint $A \subset V$ using information in $\partial A = V/A$.

- 1. Build a graph using image patches and local neighbors:
 - \rightarrow nonlocal relationships for vertices in border zone
 - \rightarrow local connection for inner nodes in A
- 2. Solve $\Delta_{\infty}f(u)=0$ for all vertices $u\in A\subset V$
- 3. Add border nodes to ∂A and repeat until $A = \emptyset$.

Goal

Inpaint $A \subset V$ using information in $\partial A = V/A$.

- 1. Build a graph using image patches and local neighbors:
 - \rightarrow nonlocal relationships for vertices in border zone
 - \rightarrow local connection for inner nodes in A
- 2. Solve $\Delta_{\infty} f(u) = 0$ for all vertices $u \in A \subset V$
- 3. Add border nodes to ∂A and repeat until $A = \emptyset$.

Interpolation of structure

Goal

Inpaint $A \subset V$ using information in $\partial A = V/A$.

[Elmoataz, Toutain, Tenbrinck '16]

- 1. Build a graph using image patches and local neighbors:
 - \rightarrow nonlocal relationships for vertices in border zone
 - \rightarrow local connection for inner nodes in A
- 2. Solve $\Delta_{\infty}f(u)=0$ for all vertices $u\in A\subset V$
- 3. Add border nodes to ∂A and repeat until $A = \emptyset$.

Interpolation of structure

Goal

Inpaint $A \subset V$ using information in $\partial A = V/A$.

[Elmoataz, Toutain, Tenbrinck '16]

- 1. Build a graph using image patches and local neighbors:
 - \rightarrow nonlocal relationships for vertices in border zone
 - \rightarrow local connection for inner nodes in A
- 2. Solve $\Delta_{\infty} f(u) = 0$ for all vertices $u \in A \subset V$
- 3. Add border nodes to ∂A and repeat until $A = \emptyset$.

Inpainting of vector-valued data

a lost area (white)

a lost area (white)

Inpainting of vector-valued data

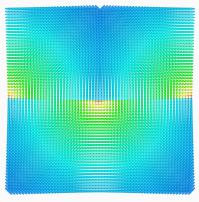
inpainted componentwise

 $(\mathcal{M} = \mathbb{R} \text{ per channel})$ [Elmoataz, Toutain, Tenbrinck, '16]

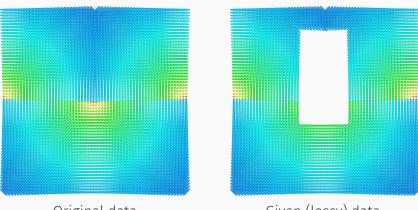
Inpainting of vector-valued data

inpainted componentwise $(\mathcal{M} = \mathbb{R} \text{ per channel})$ [Elmoataz, Toutain, Tenbrinck, '16]

inpainted vector-valued $(\mathcal{M} = \mathbb{R}^3)_{\text{[RB, Tenbrinck, '18]}}$

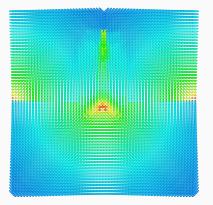


Original data

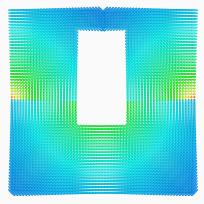


Original data

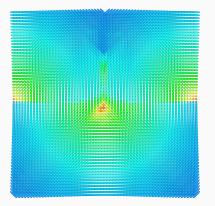
Given (lossy) data



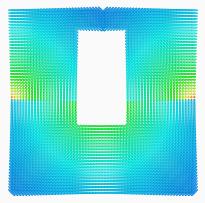
Inpainting with 25 neighbors, patch size 6



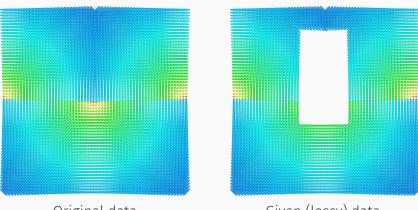
Given (lossy) data



Inpainting with 5 neighbors, patch size 6



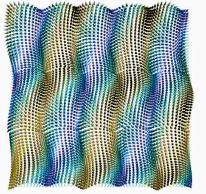
Given (lossy) data



Original data

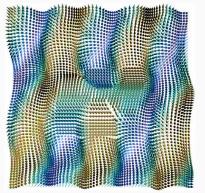
Given (lossy) data

Original data



Original data

Given (lossy) data

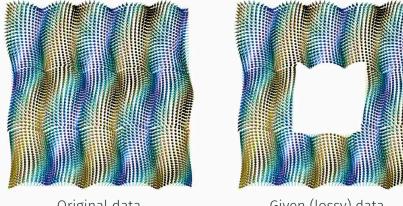


Inpainting with first and second order TV

Given (lossy) data

Inpainted with graph ∞ -Laplace

Given (lossy) data



Original data

Given (lossy) data

Conclusion

Conclusion

- · graphs model both local and nonlocal features
- \cdot manifold-valued graph ∞ -Laplacian for inpainting
- · inpaint structure on manifold-valued data

Conclusion

- · graphs model both local and nonlocal features
- \cdot manifold-valued graph ∞ -Laplacian for inpainting
- · inpaint structure on manifold-valued data

Future work

- consistency
- other graph based PDEs
- other image processing tasks (segmentation)
- other numerical schemes

Literature

RB and D. Tenbrinck. Nonlocal Inpainting of Manifold-valued Data on Finite Weighted Graphs. GSI'17. 2017. arXiv: 1704.06424.

A. Elmoataz, M. Toutain, and D. Tenbrinck. "On the *p*-Laplacian and ∞-Laplacian on Graphs with Applications in Image and Data Processing". In: SIAM J. Imag. Sci. 8.4 (2015), pp. 2412–2451.

A. M. Oberman. "A convergent difference Scheme for the Infinity Laplacian: Construction of absolutely minimizing Lipschitz extensions". In: Math. Comp. 74.251 (2004), pp. 1217–1230.

Open source Matlab software MVIRT:

http://ronnybergmann.net/mvirt/