A parallel Douglas–Rachford Algorithm for Data on Hadamard Manifolds.

Ronny Bergmann

Technische Universität Chemnitz

Riemannian Geometry in Optimization for Learning, 23rd International Symposium on Mathematical Programming, Bordeaux, July 2nd, 2018

Manifold-valued Image Processing

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

InSAR-Data of Mt. Vesuvius [Rocca, Prati, Guarnieri 1997]

phase-valued data, $\mathcal{M} = \mathbb{S}^1$

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

InSAR-Data of Mt. Vesuvius [Rocca, Prati, Guarnieri 1997]

phase-valued data, $\mathcal{M} = \mathbb{S}^1$

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

National elevation dataset [Gesch, Evans, Mauck, 2009]

directional data, $\mathcal{M} = \mathbb{S}^2$

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

diffusion tensors in human brain from the Camino dataset http://cmic.cs.ucl.ac.uk/camino

sym. pos. def. matrices, $\mathcal{M} = \mathrm{SPD}(3)$

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

horizontal slice #28 from the Camino dataset http://cmic.cs.ucLac.uk/camino sym. pos. def. matrices, $\mathcal{M} = \mathrm{SPD}(3)$

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

EBSD example from the MTEX toolbox [Bachmann, Hielscher, since 2005] Rotations (mod. symmetry), $\mathcal{M} = \mathrm{SO}(3)(/\mathcal{S}).$

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

Common properties

- Range of values is a Riemannian manifold
- Tasks from "classical" image processing

A d-dimensional Riemannian Manifold ${\cal M}$

A *d*-dimensional Riemannian manifold can be informally defined as a set \mathcal{M} covered with a 'suitable' collection of charts, that identify subsets of \mathcal{M} with open subsets of \mathbb{R}^d and a continously varying inner product on the tangential spaces.

A d-dimensional Riemannian Manifold ${\cal M}$

Geodesic $\gamma_{\widehat{x,y}}$ shortest connection (on \mathcal{M}) between $x, y \in \mathcal{M}$ **Tangent space** $T_x \mathcal{M}$ at x, with inner product $\langle \cdot, \cdot \rangle_x$ **Logarithmic map** $\log_x y = \dot{\gamma}_{\widehat{x,y}}(0)$ "speed towards y" **Exponential map** $\exp_x \xi_x = \gamma(1)$, where $\gamma(0) = x$, $\dot{\gamma}(0) = \xi_x$ **Parallel transport** $\operatorname{PT}_{x \to y}(\nu)$ of $\nu \in T_x \mathcal{M}$ along $\gamma_{\widehat{x,y}}$

- Let $\mathcal{V} \subseteq \mathcal{G} = \{1, \dots, N\} \times \{1, \dots, M\}$
- **Task:** Given noisy, possibly lossy, data $f: \mathcal{V} \to \mathbb{R}^m$: Reconstruct the original image $u_0: \mathcal{G} \to \mathbb{R}^m$
- Approach: Compute minimizer u^* of a variational model

$$\begin{array}{rll} \mathcal{E}(u) \coloneqq & \mathcal{D}(u;f) & + & \alpha \ \mathcal{R}(u), & \alpha > 0. \\ & \text{data term} & \text{regularizer/prior} \end{array}$$

- Let $\mathcal{V} \subseteq \mathcal{G} = \{1, \dots, N\} \times \{1, \dots, M\}$
- **Task:** Given noisy, possibly lossy, data $f: \mathcal{V} \to \mathbb{R}^m$: Reconstruct the original image $u_0: \mathcal{G} \to \mathbb{R}^m$
- Approach: Compute minimizer *u** of a variational model

$$\begin{aligned} \mathcal{E}(u) \coloneqq \quad \mathcal{D}(u;f) &+ \quad \alpha \; \mathcal{R}(u), \qquad \alpha > 0. \\ & \text{data term} \qquad \text{regularizer/prior} \end{aligned}$$

•
$$L^2$$
 data term: $D(u; f) = \sum_{i \in \mathcal{V}} ||u_i - f_i||^2$

- Let $\mathcal{V} \subseteq \mathcal{G} = \{1, \dots, N\} \times \{1, \dots, M\}$
- **Task:** Given noisy, possibly lossy, data $f: \mathcal{V} \to \mathbb{R}^m$: Reconstruct the original image $u_0: \mathcal{G} \to \mathbb{R}^m$
- Approach: Compute minimizer *u** of a variational model

$$\begin{array}{rll} \mathcal{E}(u)\coloneqq & \mathcal{D}(u;f) & + & \alpha \; \mathcal{R}(u), & \alpha > 0. \\ & \text{data term} & \text{regularizer/prior} \end{array}$$

- L^2 data term: $D(u; f) = \sum_{i \in \mathcal{V}} ||u_i f_i||^2$
- regularizer: Total Variation (TV) [Rudin, Osher, Fatemi, 1992]
 known to be edge preserving, for example:

anisotropic TV:
$$\mathcal{R}(u) \coloneqq \sum_{i,j} \left(\|u_{i+1,j} - u_{i,j}\| + \|u_{i,j+1} - u_{i,j}\| \right)$$

- Let $\mathcal{V} \subseteq \mathcal{G} = \{1, \dots, N\} \times \{1, \dots, M\}$
- **Task:** Given noisy, possibly lossy, data $f: \mathcal{V} \to \mathbb{R}^m$: Reconstruct the original image $u_0: \mathcal{G} \to \mathbb{R}^m$
- Approach: Compute minimizer *u** of a variational model

$$\begin{array}{rll} \mathcal{E}(u)\coloneqq & \mathcal{D}(u;f) & + & \alpha \; \mathcal{R}(u), & \alpha > 0. \\ & \text{data term} & \text{regularizer/prior} \end{array}$$

- L^2 data term: $D(u; f) = \sum_{i \in \mathcal{V}} ||u_i f_i||^2$
- regularizer: Total Variation (TV) [Rudin, Osher, Fatemi, 1992]
 known to be edge preserving, for example:

anisotropic TV:
$$\mathcal{R}(u) \coloneqq \sum_{i,j} \left(\|u_{i+1,j} - u_{i,j}\| + \|u_{i,j+1} - u_{i,j}\| \right)$$

high dimensional, non-differentiable, convex

Note. All summands of the ROF model are (squared) distances.

Let $d_{\mathcal{M}} \colon \mathcal{M} \times \mathcal{M} \to \mathbb{R}$ denote the geodesic distance on \mathcal{M} . Then the TV model for manifold-valued data $f \colon \mathcal{V} \to \mathcal{M}$ reads

$$\mathcal{E}(u) = \sum_{i \in \mathcal{V}} d^2_{\mathcal{M}}(u_i, f_i) + \alpha \sum_{i,j} \Big(d_{\mathcal{M}}(u_{i+1,j}, u_{i,j}) + d_{\mathcal{M}}(u_{i,j+1}, u_{i,j}) \Big).$$

This can be minmized with

functional Lifting

[Cremers,Strekalovski, 2011/13; Lellmann, Kötters, Strekalovski, Cremers, 2013]

• Cyclic Proximal Point-Algorithm

[Bačák, 2013; Weinmann, Storath, Demaret, 2014]

• discrete Gradient, Gradient descent, quasi-Newton

[RB, Fitschen, Persch, Steidl, 2017; Celledoni, Eidnes, Owren, Ringholm, 2018; RB, Chan, Hielscher, Persch, Steidl, 2016]

The Douglas-Rachford Algorithm

Proximum and Reflection

For $\varphi \colon \mathcal{M}^n \to (-\infty, +\infty]$ and $\lambda > 0$ the Proximum is defined by [Moreau, 1962; Rockafellar, 1976; Ferreira, Oliveira, 2002]

$$\operatorname{prox}_{\lambda\varphi}(g) \coloneqq \operatorname*{arg\,min}_{u \in \mathcal{M}^n} \frac{1}{2} \sum_{i=1}^n d_{\mathcal{M}}(u_i, g_i)^2 + \lambda\varphi(u).$$

! For a minimizer u^* of φ it holds: $\operatorname{prox}_{\lambda\varphi}(u^*) = u^*$.

Proximum and Reflection

For $\varphi \colon \mathcal{M}^n \to (-\infty, +\infty]$ and $\lambda > 0$ the Proximum is defined by [Moreau, 1962; Rockafellar, 1976; Ferreira, Oliveira, 2002]

$$\operatorname{prox}_{\lambda\varphi}(g) \coloneqq \operatorname*{arg\,min}_{u \in \mathcal{M}^n} \frac{1}{2} \sum_{i=1}^n d_{\mathcal{M}}(u_i, g_i)^2 + \lambda\varphi(u).$$

! For a minimizer u^* of φ it holds: $\operatorname{prox}_{\lambda\varphi}(u^*) = u^*$.

A map \mathcal{R}_p is called Reflection on \mathcal{M} , if

$$\mathcal{R}_p(p) = p$$
 and $D_p \mathcal{R}_p = -I$ hold.

Analogous: Reflection with respect to $\lambda \varphi$

$$\mathcal{R}_{\lambda\varphi}(x) = \mathcal{R}_{\mathrm{prox}_{\lambda\varphi}(x)}(x)$$

Proximum and Reflection

For $\varphi \colon \mathcal{M}^n \to (-\infty, +\infty]$ and $\lambda > 0$ the Proximum is defined by [Moreau, 1962; Rockafellar, 1976; Ferreira, Oliveira, 2002]

$$\operatorname{prox}_{\lambda\varphi}(g) \coloneqq \operatorname*{arg\,min}_{u \in \mathcal{M}^n} \frac{1}{2} \sum_{i=1}^n d_{\mathcal{M}}(u_i, g_i)^2 + \lambda\varphi(u).$$

! For a minimizer u^* of φ it holds: $\operatorname{prox}_{\lambda\varphi}(u^*) = u^*$.

A map \mathcal{R}_p is called Reflection on \mathcal{M} , if

$$\mathcal{R}_p(p) = p$$
 and $D_p \mathcal{R}_p = -I$ hold.

Analogous: Reflection with respect to $\lambda \varphi$

$$\mathcal{R}_{\lambda\varphi}(x) = \mathcal{R}_{\mathrm{prox}_{\lambda\varphi}(x)}(x)$$

Example. On \mathbb{R}^m we have $\mathcal{R}_p(x) = 2p - x = p - (x - p)$.

Theorem

the proximal map is given by

[Oliveira, Ferreira, 2002] For $f \in \mathcal{M}, \varphi \colon \mathcal{M} \to \mathbb{R}, \varphi(x) = d^2_{\mathcal{M}}(x, f)$ and $\lambda > 0$.

$$\operatorname{prox}_{\lambda\varphi}(x) = \gamma_{\widehat{x,f}}(\frac{\lambda}{1+\lambda})$$

Theorem [Weinmann, Storath, Demaret, 2014] For $\varphi \colon \mathcal{M} \times \mathcal{M}, \varphi(x, y) = d_{\mathcal{M}}(x, y), \lambda > 0$, the proximal map is given by

$$\operatorname{prox}_{\lambda\varphi}(x,y) = \begin{cases} \left(\gamma_{\widehat{x,y}}(\frac{\lambda}{d_{\mathcal{M}}(x,y)}), \gamma_{\widehat{x,y}}(1-\frac{\lambda}{d_{\mathcal{M}}(x,y)})\right) & \text{ if } \lambda < \frac{d_{\mathcal{M}}(x,y)}{2}, \\ \left(\gamma_{\widehat{x,y}}(\frac{1}{2}), \gamma_{\widehat{x,y}}(\frac{1}{2})\right) & \text{ else.} \end{cases}$$

The Douglas-Rachford Splitting in Euclidean Space

Goal: Minimize

$$\underset{x \in \mathbb{R}^n}{\arg\min} \varphi(x) + \psi(x)$$

using a splitting approach

• for linear operators and PDEs

[Douglas, Rachford, 1956]

- for monotone inclusion problems
- [Lions, Mercier, 1979, Eckstein, 1989]
- applications to image processing [Combe

[Combettes, Pesquet, 2007]

The iteration of the Douglas-Rachford Algorithm reads

$$t^{(k+1)} \coloneqq \frac{1}{2}t^{(k)} + \frac{1}{2}\mathcal{R}_{\lambda\varphi}(\mathcal{R}_{\lambda\psi}(t^{(k)})), \quad k \in \mathbb{N}_0, t^{(0)} \in \mathbb{R}^n,$$

and is related to the minimizer by $x^{\star} = \operatorname{prox}_{\lambda\psi}(\hat{t})$.

The Douglas-Rachford Splitting in Euclidean Space

Goal: Minimize

$$\underset{x \in \mathbb{R}^n}{\arg\min} \varphi(x) + \psi(x)$$

using a splitting approach

for linear operators and PDEs

[Douglas, Rachford, 1956]

- for monotone inclusion problems [Lions, Mercier, 1979, Eckstein, 1989]
- applications to image processing
 [Combettes, Pesquet, 2007]

The iteration of the Douglas-Rachford Algorithm reads

 $t^{(k+1)} \coloneqq \frac{\beta}{2} t^{(k)} + \frac{(1-\beta)\mathcal{R}_{\lambda\varphi}(\mathcal{R}_{\lambda\psi}(t^{(k)}))}{k \in \mathbb{N}_0, t^{(0)} \in \mathbb{R}^n, \beta \in (0,1),$

and is related to the minimizer by $x^{\star} = \operatorname{prox}_{\lambda\psi}(\hat{t})$.

A manifold $\mathcal H$ is called Hadamard manifold, if

$$d_{\mathcal{M}}^2(x,v) + d_{\mathcal{M}}^2(y,w) \le d_{\mathcal{M}}^2(x,w) + d_{\mathcal{M}}^2(y,v) + 2d_{\mathcal{M}}(x,y)_{\mathcal{M}}^2(v,w)$$

holds for all $x,y,v,w \in \mathcal{H}$, i.e. we have a nonpositive sectional curvature. Then

- geodesics $\gamma_{\widehat{x,y}}$: $[0,1] \rightarrow \mathcal{H}$ are unique
- + $\mathcal{C} \subset \mathcal{H}$ is convex, if $\gamma_{\widehat{x,y}} \subset \mathcal{C}$ for all $x, y \in \mathcal{C}$
- $\varphi \colon \mathcal{H} \to (-\infty, \infty]$ is convex on \mathcal{C} if $\varphi \circ \gamma_{\widehat{x,y}}$ is convex
- The reflection reads $\mathcal{R}_p(x) = \exp_p(-\log_p x)$

 \mathcal{H} is called symmetric, if \mathcal{R}_p is a isometry for all p.

For $\varphi, \psi \in \Gamma^0(\mathcal{H})$ (proper, convex, lsc.)

Goal: Find minimizer

$$x^{\star} \in \operatorname*{arg\,min}_{x \in \mathcal{H}} \varphi(x) + \psi(x)$$

Iteration: For some $t^{(0)} \in \mathcal{H}$ compute the Krasnoselskii-Mann-iteration, $k \in \mathbb{N}_0$,

[RB, Persch, Steidl, 2016]

$$s^{(k)} = \mathcal{R}_{\lambda\varphi}(\mathcal{R}_{\lambda\psi}(t^{(k)}))$$
$$t^{(k+1)} = \gamma_{t^{(k)},s^{(k)}}(\beta_k)$$

with $\beta_k \in (0, 1)$ and $\sum_{k \in \mathbb{N}} \beta_k (1 - \beta_k) = \infty$

Convergence of the DRA

Theorem

[Kakavandi 2013]

Let $\mathcal{R}_{\lambda\varphi}, \mathcal{R}_{\lambda\psi}$ are nonexpansive and hence $T = \mathcal{R}_{\lambda\varphi} \circ \mathcal{R}_{\lambda\psi}$ is nonexpansive. Let T possess a fix point \hat{t} .

Then the DRA converges for every start point $t^{(0)} \in \mathcal{H}$ to a fix point \hat{t} of T.

Convergence of the DRA

Theorem

[Kakavandi 2013]

Let $\mathcal{R}_{\lambda\varphi}, \mathcal{R}_{\lambda\psi}$ are nonexpansive and hence $T = \mathcal{R}_{\lambda\varphi} \circ \mathcal{R}_{\lambda\psi}$ is nonexpansive. Let T possess a fix point \hat{t} .

Then the DRA converges for every start point $t^{(0)} \in \mathcal{H}$ to a fix point \hat{t} of T.

Theoreom[RB, Persch, Steidl, 2016]Let $\varphi, \psi \in \Gamma^0(\mathcal{H})$, let there be a minimizer x^* of $\varphi + \psi$, andlet $T = \mathcal{R}_{\lambda\varphi} \circ \mathcal{R}_{\lambda\psi}$ be nonexpansive.

Then there exists for every x^{\star} a fix point \hat{t} of T, such that

 $x^{\star} = \operatorname{prox}_{\lambda\psi}(\hat{t})$

holds. Further, for every \hat{t} , the point $\mathrm{prox}_{\lambda\psi}(\hat{t})$ is a minimizer of $\varphi+\psi.$

Parallelization

Given:
$$\varphi_i \in \Gamma^0(\mathcal{H}^m)$$
, $i = 1, ..., c$
Goal: Find $x^* \in \underset{x \in \mathcal{H}^m}{\operatorname{arg\,min}} \sum_{i=1}^c \varphi_i(x)$
Employ: $\Phi(\mathbf{x}) \coloneqq \sum_{i=1}^c \varphi_i(x_i)$, $\mathbf{x} = (x_1, ..., x_c)^{\mathrm{T}} \in \mathcal{H}^{mc}$
and $\mathsf{D} \coloneqq \{\mathbf{x} \in \mathcal{H}^{mc} \colon x_1 = \ldots = x_c \in \mathcal{H}^m\} \subset \mathcal{H}^{mc}$

Parallelization

Given:
$$\varphi_i \in \Gamma^0(\mathcal{H}^m)$$
, $i = 1, ..., c$
Goal: Find $x^* \in \underset{x \in \mathcal{H}^m}{\operatorname{arg\,min}} \sum_{i=1}^c \varphi_i(x) \Leftrightarrow \mathbf{x}^* \in \underset{\mathbf{x} \in \mathcal{H}^{mc}}{\operatorname{arg\,min}} \Phi(\mathbf{x}) + \iota_{\mathsf{D}}(\mathbf{x})$
Employ: $\Phi(\mathbf{x}) \coloneqq \sum_{i=1}^c \varphi_i(x_i)$, $\mathbf{x} = (x_1, ..., x_c)^{\mathsf{T}} \in \mathcal{H}^{mc}$
and $\mathsf{D} \coloneqq \{\mathbf{x} \in \mathcal{H}^{mc} \colon x_1 = \ldots = x_c \in \mathcal{H}^m\} \subset \mathcal{H}^{mc}$

Parallelization

Given:
$$\varphi_i \in \Gamma^0(\mathcal{H}^m)$$
, $i = 1, ..., c$
Goal: Find $x^* \in \underset{x \in \mathcal{H}^m}{\operatorname{arg\,min}} \sum_{i=1}^c \varphi_i(x) \Leftrightarrow \mathbf{x}^* \in \underset{\mathbf{x} \in \mathcal{H}^{mc}}{\operatorname{arg\,min}} \Phi(\mathbf{x}) + \iota_{\mathsf{D}}(\mathbf{x})$
Employ: $\Phi(\mathbf{x}) \coloneqq \sum_{i=1}^c \varphi_i(x_i)$, $\mathbf{x} = (x_1, ..., x_c)^{\mathsf{T}} \in \mathcal{H}^{mc}$
and $\mathsf{D} \coloneqq \{\mathbf{x} \in \mathcal{H}^{mc} \colon x_1 = \ldots = x_c \in \mathcal{H}^m\} \subset \mathcal{H}^{mc}$

We obtain the parallel Douglas-Rachford algorithm (PDRA): For a start point $\mathbf{t}^{(0)} \in \mathcal{H}^{mc}$, and $k = 0, \dots$, compute [RB, Persch, Steidl, 2016]

$$\begin{split} \mathbf{s}^{(k)} &= \mathcal{R}_{\lambda\Phi} \mathcal{R}_{\iota_{\mathsf{D}}} \big(\mathbf{t}^{(k)} \big), \\ \mathbf{t}^{(k+1)} &= \gamma_{\mathbf{t}^{(k)}, \mathbf{s}^{(k)}} \big(\beta_k \big) \\ \Rightarrow x^* &= \operatorname{prox}_{\iota_{\mathsf{D}}} \big(\hat{\mathbf{t}} \big)_1 = \operatorname*{arg\,min}_{x \in \mathcal{H}^m} \sum_{i=1}^c d_{\mathcal{H}}^2 (\hat{t}_k, x) \quad (\mathsf{Fréchet\,mean}) \end{split}$$

Theorem: Nonexpansiveness of $\mathcal{R}_{\lambda\Phi}$ **[RB, Persch, Steidl, 2016]** Let \mathcal{H} be a symmetric Hadamard manifold, $a \in \mathcal{H}$ and $\lambda > 0$. For $g(x) \coloneqq d^2_{\mathcal{H}}(a, x)$ and $G(x_0, x_1) \coloneqq d_{\mathcal{H}}(x_0, x_1)$ the reflections $\mathcal{R}_{\lambda g}$ und $\mathcal{R}_{\lambda G}$ are nonexpansive.

Theorem: Nonexpansiveness of $\mathcal{R}_{\lambda\Phi}$ **[RB, Persch, Steidl, 2016]** Let \mathcal{H} be a symmetric Hadamard manifold, $a \in \mathcal{H}$ and $\lambda > 0$. For $g(x) \coloneqq d^2_{\mathcal{H}}(a, x)$ and $G(x_0, x_1) \coloneqq d_{\mathcal{H}}(x_0, x_1)$ the reflections $\mathcal{R}_{\lambda g}$ und $\mathcal{R}_{\lambda G}$ are nonexpansive.

Theorem: Nonexpansiveness of $\mathcal{R}_{\iota_{D}}$ [Fernández-León, Nicolae, 2013] Let \mathcal{H} be a symmetric Hadamard manifold with constant sectional curvature and \mathcal{C} be a nonempty, convex subset of \mathcal{H} . Then $\mathcal{R}_{\iota_{\mathcal{C}}}$ is nonexpansive.

Theorem: Nonexpansiveness of $\mathcal{R}_{\lambda\Phi}$ **[RB, Persch, Steidl, 2016]** Let \mathcal{H} be a symmetric Hadamard manifold, $a \in \mathcal{H}$ and $\lambda > 0$. For $g(x) \coloneqq d^2_{\mathcal{H}}(a, x)$ and $G(x_0, x_1) \coloneqq d_{\mathcal{H}}(x_0, x_1)$ the reflections $\mathcal{R}_{\lambda g}$ und $\mathcal{R}_{\lambda G}$ are nonexpansive.

Theorem: Nonexpansiveness of $\mathcal{R}_{\iota_{D}}$ [Fernández-León, Nicolae, 2013] Let \mathcal{H} be a symmetric Hadamard manifold with constant sectional curvature and \mathcal{C} be a nonempty, convex subset of \mathcal{H} . Then $\mathcal{R}_{\iota_{\mathcal{C}}}$ is nonexpansive.

 \Rightarrow Convergence of PDRA

Numerical Examples

The Manifold-valued Image Restoration Toolbox

- inspired by Manopt¹; focus on image processing
- implemented in Matlab & C++ (mex); Julia in preparation
- easy access to manifold-valued image processing
 - Documentation http://ronnybergmann.net/mvirt/
 - Code github.com/kellertuer/mvirt/
- manifolds; object with exp,log,dist,parallelTransport
 - symmetric positive definite $d \times d$ matrices $\mathcal{P}(d)$
 - special orthogonal group SO(3)
 - \cdot spheres \mathbb{S}^n
 - \cdot hyperbolic spaces \mathcal{H}^n
 - ...
- algorithms implemented on the abstract manifold object
- plot functions and exports to TikZ/Asymptote.

¹manopt.org - Optimization on Manifolds in Matlab

An Algorithm to compare to: CPPA

Decomposing
$$\mathcal{E} = \sum_{i=1}^{c} \varphi_i$$
 wo obtain the
Cyclic Proximal Point Algorithmus (CPPA)
defined for a starting point $x^{(0)} \in \mathcal{M}$ by

[Bertsekas, 2011; Bačák, 2014]

$$x^{(k+\frac{i+1}{c})} = \operatorname{prox}_{\lambda_k \varphi_i}(x^{(k+\frac{i}{c})}), \quad i = 0, \dots, c-1, \ k \ge 0.$$

Convergence of the ROF model

- in Euclidean space $\mathcal{M} = \mathbb{R}^n$ if $\{\lambda_k\}_{k \in \mathbb{N}} \in \ell_2(\mathbb{Z}) \setminus \ell_1(\mathbb{Z})$
- On Hadamard manifolds, if φ_i add. Lipschitz

[Bačák, 2013; Weinmann, Storath, Demaret, 2014]

- with locality restrictions also on \mathbb{S}^1 , $(\mathbb{S}^1)^m \mathbb{R}^n$ [RB, Laus, Weinmann, Steidl, 2014; RB, Weinmann, 2016]
- can be extended to second order differences

[RB, Laus, Weinmann, Steidl, 2014; RB, Weinmann, 2016; Bačák, RB, Weinmann, Steidl, 2016]

- Noise: wrapped Gaussian, $\sigma = 0.2$
- noisy $f_n = (f_0 + \eta)_{2\pi}$

- Comparison of $f_{\rm O}$ & $f_{\rm R}$ width $f_{\rm R}$

- Denoised with CPPA and realvalued TV₁, ($\alpha = \frac{3}{4}, \beta = 0$)
- $\cdot\,$ Artefacts at the "jumps that are none" from representation

- Denoised with CPPA and TV_1 ($\alpha = \frac{3}{4}$, $\beta = 0$)
- but: stair caising

- Denoised with CPPA and TV_2 ($\alpha = 0, \beta = \frac{3}{2}$)
- but: problems in constant areas

- Denoised with CPPA and $TV_1 \& TV_2$ ($\alpha = \frac{1}{4}, \beta = \frac{3}{4}$)
- · combined: smallest mean squarred error.

An Image of Gaussian Distributions

An Image of Gaussian Distributions

Comparison of CPPA & PDRA

Stopping criterion:

•
$$\epsilon^{(k)} \coloneqq \max_{(i,j) \in \mathcal{G}} \left\{ d(t_{i,j}^{(k)}, t_{i,j}^{(k-1)}) \right\} < 10^{-6}$$

• k > 1500

λ	СРРА	PDRA		
	in sec.	$\beta_k = 0.5$	$\beta_k = 0.9$	$\beta_k = 0.95$
0.05	56.85	129.26	65.21	59.84
0.1	56.54	59.21	34.32	36.67
0.5	65.17	57.41	42.06	46.07
1	57.14	93.75	63.58	58.66

Table 1: Runtimes (seconds) of the algorithms.

Comparison of CPPA & PDRA

λ	СРРА	PDRA		
	184.3643+	$\beta_k = 0.5$	$\beta_k = 0.9$	$\beta_k = 0.95$
0.05	44.80	1.021×10^{-5}	1.180×10^{-5}	1.627×10^{-5}
0.1	10.65	2.514×10^{-5}	2.969×10^{-5}	3.429×10^{-5}
0.5	1.055×10^{-2}	5.082×10^{-4}	2.785×10^{-4}	2.256×10^{-4}
1	1.953×10^{-2}	8.189×10^{-4}	5.027×10^{-4}	4.992×10^{-4}

Table 1: Functional values $\mathcal{E}(t^{(k_{\text{last}})})$

Inpainting of a $\mathcal{P}(3)$ -valued Image

Visualization of sym. pos. def. 3×3 matrices as ellipsods

Original.

Inpainting of a $\mathcal{P}(3)$ -valued Image

Visualization of sym. pos. def. 3×3 matrices as ellipsods

Original.

lossy, noisy data

Inpainting of a $\mathcal{P}(3)$ -valued Image

Visualization of sym. pos. def. 3×3 matrices as ellipsods

Original.

Reconstruction, $\alpha = 0.1$

Conclusion

Conclusion

- Variational methods can be generalized to manifold valued data
- Douglas-Rachford Algorithm for efficient minimization (eqiv. to ADMM on \mathbb{R}^n)

Numerical examples implemented in MVIRT

http://ronnybergmann.net/mvirt/

which also serves as an easy starting point for manifold-valued image processing. A port to Julia is in progress.

- 4
_ 1
=

RB, J. Persch, and G. Steidl. "A Parallel Douglas–Rachford Algorithm for Minimizing ROF-like Functionals on Images with Values in Symmetric Hadamard Manifolds". In: *SIAM J. Imag. Sci.* 9.3 (2016), pp. 901–937. arXiv: 1512.02814.

ronnybergmann.net/talks/2018-ISMP18-DouglasRachford.pdf