Nonlocal inpainting of manifold-valued data on finite weighted graphs

Ronny Bergmann¹, Daniel Tenbrinck²

¹TU Chemnitz, ²WWU Münster

Minisymposium 31.3: Variational Approaches for Regularizing Nonlinear Geometric Data, SIAM Imaging 2018,

Bologna, June 7, 2018

Manifold-valued image processing

New data aquisition modalities \Rightarrow non-Euclidean range of data

- Interferometric synthetic aperture radar (InSAR)
- Surface normals
- Diffusion tensors in magnetic resonance imaging (DT-MRI)
- Electron backscattered diffraction (EBSD)
- Directional data: wind, flow, GPS,...

InSAR data of Mt. Vesuvius [Rocca, Prati, Guarnieri 1997]

phase valued data, \mathbb{S}^1

New data aquisition modalities \Rightarrow non-Euclidean range of data

- Interferometric synthetic aperture radar (InSAR)
- Surface normals
- Diffusion tensors in magnetic resonance imaging (DT-MRI)
- Electron backscattered diffraction (EBSD)
- Directional data: wind, flow, GPS,...

National elevation dataset [Gesch, Evans, Mauck, 2009]

directional data, \mathbb{S}^2

New data aquisition modalities \Rightarrow non-Euclidean range of data

- Interferometric synthetic aperture radar (InSAR)
- Surface normals
- Diffusion tensors in magnetic resonance imaging (DT-MRI)
- Electron backscattered diffraction (EBSD)
- Directional data: wind, flow, GPS,...

the Camino data set http://cmic.cs.ucl.ac.uk/camino

sym. pos. def. Matrices, $\mathcal{P}(3)$

New data aquisition modalities \Rightarrow non-Euclidean range of data

- Interferometric synthetic aperture radar (InSAR)
- Surface normals
- Diffusion tensors in magnetic resonance imaging (DT-MRI)
- Electron backscattered diffraction (EBSD)
- Directional data: wind, flow, GPS,...

Slice # 28 from the Camino data set http://cmic.cs.ucl.ac.uk/camino

sym. pos. def. Matrices, $\mathcal{P}(3)$

New data aquisition modalities \Rightarrow non-Euclidean range of data

- Interferometric synthetic aperture radar (InSAR)
- Surface normals
- Diffusion tensors in magnetic resonance imaging (DT-MRI)
- Electron backscattered diffraction (EBSD)
- Directional data: wind, flow, GPS,...

EBSD example from the MTEX toolbox [Bachmann, Hielscher, since 2005]

rotations (mod. symmetry), SO(3)/S.

New data aquisition modalities \Rightarrow non-Euclidean range of data

- Interferometric synthetic aperture radar (InSAR)
- Surface normals
- Diffusion tensors in magnetic resonance imaging (DT-MRI)
- Electron backscattered diffraction (EBSD)
- Directional data: wind, flow, GPS,...

Common properties

- The values lie on a Riemannian manifold
- tasks from "classical" image processing
- e.g. inpainting

A d-dimensional Riemannian Manifold ${\cal M}$

A *d*-dimensional Riemannian manifold can be informally defined as a set \mathcal{M} covered with a 'suitable' collection of charts, that identify subsets of \mathcal{M} with open subsets of \mathbb{R}^d and a continously varying inner product on the tangential spaces.

A d-dimensional Riemannian Manifold ${\cal M}$

Geodesic $\gamma_{\widehat{x,y}}$ shortest connection (on \mathcal{M}) between $x, y \in \mathcal{M}$ **Tangent space** $T_x \mathcal{M}$ at x, with inner product $\langle \cdot, \cdot \rangle_x$ **Logarithmic map** $\log_x y = \dot{\gamma}_{\widehat{x,y}}(0)$ "speed towards y" **Exponential map** $\exp_x \xi_x = \gamma(1)$, where $\gamma(0) = x$, $\dot{\gamma}(0) = \xi_x$ **Parallel transport** $\operatorname{PT}_{x \to y}(\nu)$ of $\nu \in T_x \mathcal{M}$ along $\gamma_{\widehat{x,y}}$

Finite weighted graphs

A finite weighted graph G = (V, E, w) consists of

- \cdot a finite set of nodes V
- a finite set of directed edges $E \subset V \times V$
- a (symmetric) weight function $w: V \times V \to \mathbb{R}^+$,

w(u,v) = 0 for $v \not\sim u$.

Euclidean graph framework

Application data on

is represented by a vertex function $f: V \to \mathbb{R}^m$

"Anything can be modeled as a graph"

Goal: A Minimizer of a Variational Model $\mathcal{E} \colon \mathcal{H}(V; \mathcal{M}) \to \mathbb{R}$

the anisotropic energy functional

[Lellmann, Strekalovskiy, Kötters, Cremers, '13; Weinmann, Demaret, Storath, '14; RB, Persch, Steidl, '16]

$$\mathcal{E}_{\mathbf{a}}(f) \coloneqq \frac{\lambda}{2} \sum_{u \in V} d_{\mathcal{M}}^2(f_0(u), f(u)) + \frac{1}{p} \sum_{(u,v) \in E} \|\nabla f(u,v)\|_{f(u)}^p,$$

and the isotropic energy functional

[RB, Chan, Hielscher, Persch, Steidl, '16]

$$\mathcal{E}_{i}(f) := \frac{\lambda}{2} \sum_{u \in V} d_{\mathcal{M}}^{2}(f_{0}(u), f(u)) + \frac{1}{p} \sum_{u \in V} \left(\sum_{v \sim u} \|\nabla f(u, v)\|_{f(u)}^{2} \right)^{p/2}$$

The graph *p*-Laplace for manifold-valued data

We recently defined *p*-Graph-Laplacians:

[RB, Tenbrinck, '18]

• anisotropic $\Delta_p^{\mathrm{a}} \colon \mathcal{H}(V; \mathcal{M}) \to \mathcal{H}(V; T\mathcal{M})$ by

$$\begin{aligned} \Delta_p^{\mathbf{a}} f(u) &:= \operatorname{div} \left(\|\nabla f\|_{f(\cdot)}^{p-2} \nabla f \right)(u) \\ &= -\sum_{v \sim u} \sqrt{w(u,v)}^p d_{\mathcal{M}}^{p-2}(f(u), f(v)) \log_{f(u)} f(v) \end{aligned}$$

• isotropic $\Delta_p^i \colon \mathcal{H}(V; \mathcal{M}) \to \mathcal{H}(V; T_f \mathcal{M})$ by $\Delta_p^i f(u) \coloneqq \operatorname{div} \left(\|\nabla f\|_{2, f(\cdot)}^{p-2} \nabla f \right)(u)$ $= -b_i(u) \sum_{v \sim u} w(u, v) \log_{f(u)} f(v) ,$

where

$$b_{i}(u) := \|\nabla f\|_{2,f(u)}^{p-2} = \left(\sum_{v \sim u} w(u,v) d_{\mathcal{M}}^{2}(f(u),f(v))\right)^{\frac{p-2}{2}}$$

The real-valued graph $\infty-$ Laplacian

Let $\Omega \subset \mathbb{R}^d$ be a bounded, open set and $f \colon \Omega \to \mathbb{R}$ smooth.

The infinity Laplacian $\Delta_{\infty} f$ in $x \in \Omega$ is defined as [Crandall, Evans, Gariepy 'o1]

$$\Delta_{\infty}f(x) = \sum_{j=1}^{d} \sum_{k=1}^{d} \frac{\partial f}{\partial x_j} \frac{\partial f}{\partial x_k} \frac{\partial^2 f}{\partial x_j x_k}(x).$$

Applications in image interpolation and (stucture) inpainting. [Caselles, Morel, Sbert '98] Based on a simple approximation by min- and max-values in a neighborhood [Obermann, '04]

$$\Delta_{\infty} f(x) = \frac{1}{r^2} \left(\min_{y \in B_r(x)} f(y) + \max_{y \in B_r(x)} f(y) - 2f(x) \right) + \mathcal{O}(r^2).$$

a real-valued graph-based variant reads [Elmoataz, Desquensnes, Lakhdari '14]

$$\begin{aligned} \Delta_{\infty} f(u) &= ||\nabla^{+} f(u)||_{\infty} - ||\nabla^{-} f(u)||_{\infty} \\ &= \max_{v \sim u} |\min(\sqrt{w(u, v)}(f(v) - f(u)), 0)| \\ &- \max_{v \sim u} |\max(\sqrt{w(u, v)}(f(v) - f(u)), 0)| \end{aligned}$$

Observation

[Aronsson '67; Jensen '93]

Any (unique) viscosity solution f^* of the Dirichlet problem

$$\begin{cases} -\Delta_{\infty} f(x) = 0, & \text{ for } x \in \Omega, \\ f(x) = \varphi(x), & \text{ for } x \in \partial\Omega, \end{cases}$$

is an absolutely minimizing Lipschitz extension (AML) of φ , i.e.,

 $f^*(x) = g(x)$ for $x \in \partial \Sigma \Rightarrow ||Df^*||_{L^{\infty}(\Sigma)} \le ||Dg||_{L^{\infty}(\Sigma)}$,

for every open, bounded subset $\Sigma \subset \Omega$ and every $g \in C(\overline{\Sigma})$

Observation

[Aronsson '67; Jensen '93]

Any (unique) viscosity solution f^* of the Dirichlet problem

$$\begin{cases} -\Delta_{\infty} f(x) = 0, & \text{ for } x \in \Omega, \\ f(x) = \varphi(x), & \text{ for } x \in \partial\Omega, \end{cases}$$

is an absolutely minimizing Lipschitz extension (AML) of φ , i.e.,

$$f^*(x) = g(x) \text{ for } x \in \partial \Sigma \Rightarrow ||Df^*||_{L^{\infty}(\Sigma)} \le ||Dg||_{L^{\infty}(\Sigma)},$$

for every open, bounded subset $\Sigma\subset \Omega$ and every $g\in C(\overline{\Sigma})$

 $\Rightarrow \text{ minimize locally the discrete Lipschitz constant [Obermann, '04]}$ $\min_{f(x_0)} L(f(x_0)) \quad \text{with} \quad L(f(x_0)) = \max_{x_j \sim x_0} \frac{|f(x_0) - f(x_j)|}{\|x_0 - x_j\|}$

Observation

[Aronsson '67; Jensen '93]

Any (unique) viscosity solution f^* of the Dirichlet problem

$$\begin{cases} -\Delta_{\infty} f(x) = 0, & \text{ for } x \in \Omega, \\ f(x) = \varphi(x), & \text{ for } x \in \partial\Omega, \end{cases}$$

is an absolutely minimizing Lipschitz extension (AML) of φ , i.e.,

$$f^*(x) = g(x) \text{ for } x \in \partial \Sigma \Rightarrow ||Df^*||_{L^{\infty}(\Sigma)} \le ||Dg||_{L^{\infty}(\Sigma)},$$

for every open, bounded subset $\Sigma\subset \Omega$ and every $g\in C(\overline{\Sigma})$

 \Rightarrow minimize locally the discrete Lipschitz constant [Obermann, '04]

$$\min_{f(x_0)} L(f(x_0)) \quad \text{with} \quad L(f(x_0)) = \max_{x_j \sim x_0} \frac{|f(x_0) - f(x_j)|}{\|x_0 - x_j\|}$$

 \Rightarrow consistent scheme for solving $-\Delta_{\infty}f = 0$.

On ${\mathbb R}\,$ the infinity Laplace operator can be approximated by

$$\Delta_{\infty}f(x_0) = \frac{1}{\|x_0 - x_j^*\| + \|x_0 - x_i^*\|} \left(\frac{f(x_0) - f(x_j^*)}{\|x_0 - x_j^*\|} + \frac{f(x_0) - f(x_i^*)}{\|x_0 - x_i^*\|}\right)$$

where the neighbors (x_i^*, x_j^*) are determined by

[Obermann, '04]

$$(x_i^*, x_j^*) = \operatorname*{argmax}_{x_i, x_j \sim x_0} \frac{\mid f(x_i) - f(x_j) \mid}{\|x_0 - x_i\| + \|x_0 - x_j\|}$$

On ${\mathbb R}\,$ the infinity Laplace operator can be approximated by

$$\Delta_{\infty}f(x_0) = \frac{1}{\|x_0 - x_j^*\| + \|x_0 - x_i^*\|} \left(\frac{f(x_0) - f(x_j^*)}{\|x_0 - x_j^*\|} + \frac{f(x_0) - f(x_i^*)}{\|x_0 - x_i^*\|}\right)$$

where the neighbors (x_i^*, x_j^*) are determined by

[Obermann, '04]

$$(x_i^*, x_j^*) = \operatorname*{argmax}_{x_i, x_j \sim x_0} \frac{|(f(x_i) - f(x_0)) - (f(x_j) - f(x_0))|}{\|x_0 - x_i\| + \|x_0 - x_j\|}$$

On \mathbb{R}^m the infinity Laplace operator can be approximated by

$$\Delta_{\infty}f(x_0) = \frac{1}{\|x_0 - x_j^*\| + \|x_0 - x_i^*\|} \left(\frac{f(x_0) - f(x_j^*)}{\|x_0 - x_j^*\|} + \frac{f(x_0) - f(x_i^*)}{\|x_0 - x_i^*\|}\right)$$

where the neighbors (x_i^*, x_j^*) are determined by

[Obermann, '04; RB, Tenbrinck, '17]

$$(x_i^*, x_j^*) = \operatorname*{argmax}_{x_i, x_j \sim x_0} \frac{\|(f(x_i) - f(x_0)) - (f(x_j) - f(x_0))\|}{\|x_0 - x_i\| + \|x_0 - x_j\|}$$

The manifold-valued graph $\infty-$ Laplacian

We define the graph- ∞ -Laplace operator for manifold valued data $\Delta_{\infty}f$ in a vertex $u \in V$ as

$$\Delta_{\infty} f(u) := \frac{\sqrt{w(u, v_1^*)} \log_{f(u)} f(v_1^*) + \sqrt{w(u, v_2^*)} \log_{f(u)} f(v_2^*)}{\sqrt{w(u, v_1^*)} + \sqrt{w(u, v_2^*)}},$$

where $v_1^*, v_2^* \in \mathcal{N}(u)$ maximize the discrete Lipschitz constant in the local tangent space $T_{f(u)}\mathcal{M}$ among all neighbors, i.e.,

(v_1^*, v_2^*)

$$= \underset{(v_1,v_2)\in\mathcal{N}^2(u)}{\operatorname{argmax}} \left\| \sqrt{w(u,v_1)} \log_{f(u)} f(v_1) - \sqrt{w(u,v_2)} \log_{f(u)} f(v_2) \right\|_{f(u)}$$

Numerical iteration scheme

to solve

$$\begin{cases} \Delta_{\infty} f(u) = 0 & \text{for all } u \in U, \\ f(u) = g(u) & \text{for all } u \in V/U. \end{cases}$$

we introduce an artificial time dimension t, i.e.

$$\begin{cases} \frac{\partial f}{\partial t}(u,t) = \Delta_{\infty}f(u,t) & \text{for all } u \in U, \ t \in (0,\infty), \\ f(u,0) = f_0(u) & \text{for all } u \in U, \\ f(u,t) = g(u,t) & \text{for all } u \in V/U, t \in [0,\infty). \end{cases}$$

For any $u \in V$, $p \in \mathbb{R}^+ \cup \{\infty\}$, $\lambda \ge 0$, we aim to solve $0 \stackrel{!}{=} \Delta_p f(u) - \lambda \log_{f(u)} f_0(u) \in \mathcal{T}_{f(u)}\mathcal{M}.$

Algorithm. Forward difference or explicit scheme:

$$f_{n+1}(u) = \exp_{f_n(u)} \left(\Delta t \left(\Delta_p f_n(u) - \lambda \log_{f_n(u)} f_0(u) \right) \right)$$

! to meet CFL conditions: small Δt necessary

Numerical examples

Goal Inpaint $A \subset V$ using information in $\partial A = V/A$.

[Elmoataz, Toutain, Tenbrinck '16]

Goal Inpaint $A \subset V$ using information in $\partial A = V/A$.

[Elmoataz, Toutain, Tenbrinck '16]

1. Build a graph using image patches and local neighbors:

Goal

Inpaint $A \subset V$ using information in $\partial A = V/A$.

[Elmoataz, Toutain, Tenbrinck '16]

Build a graph using image patches and local neighbors:

 → nonlocal relationships for vertices in border zone (red)
 → local connection for inner nodes in A

Goal

Inpaint $A \subset V$ using information in $\partial A = V/A$.

[Elmoataz, Toutain, Tenbrinck '16]

- Build a graph using image patches and local neighbors:

 → nonlocal relationships for vertices in border zone (red)
 → local connection for inner nodes in A
- 2. Solve $\Delta_{\infty}f(u) = 0$ for all vertices $u \in A \subset V$

Goal

- Build a graph using image patches and local neighbors:

 → nonlocal relationships for vertices in border zone
 → local connection for inner nodes in A
- 2. Solve $\Delta_{\infty}f(u) = 0$ for all vertices $u \in A \subset V$
- 3. Add border nodes to ∂A and repeat until $A = \emptyset$.

[[]Elmoataz, Toutain, Tenbrinck '16]

Goal

- Build a graph using image patches and local neighbors:

 → nonlocal relationships for vertices in border zone
 → local connection for inner nodes in A
- 2. Solve $\Delta_{\infty}f(u) = 0$ for all vertices $u \in A \subset V$
- 3. Add border nodes to ∂A and repeat until $A = \emptyset$.

[[]Elmoataz, Toutain, Tenbrinck '16]

Goal

- Build a graph using image patches and local neighbors:

 → nonlocal relationships for vertices in border zone
 → local connection for inner nodes in A
- 2. Solve $\Delta_{\infty}f(u) = 0$ for all vertices $u \in A \subset V$
- 3. Add border nodes to ∂A and repeat until $A = \emptyset$.

[[]Elmoataz, Toutain, Tenbrinck '16]

Goal

- Build a graph using image patches and local neighbors:

 → nonlocal relationships for vertices in border zone
 → local connection for inner nodes in A
- 2. Solve $\Delta_{\infty}f(u) = 0$ for all vertices $u \in A \subset V$
- 3. Add border nodes to ∂A and repeat until $A = \emptyset$.

[[]Elmoataz, Toutain, Tenbrinck '16]

Goal

- Build a graph using image patches and local neighbors:

 → nonlocal relationships for vertices in border zone
 → local connection for inner nodes in A
- 2. Solve $\Delta_{\infty}f(u) = 0$ for all vertices $u \in A \subset V$
- 3. Add border nodes to ∂A and repeat until $A = \emptyset$.

[[]Elmoataz, Toutain, Tenbrinck '16]

Goal

- Build a graph using image patches and local neighbors:

 → nonlocal relationships for vertices in border zone
 → local connection for inner nodes in A
- 2. Solve $\Delta_{\infty}f(u) = 0$ for all vertices $u \in A \subset V$
- 3. Add border nodes to ∂A and repeat until $A = \emptyset$.

[[]Elmoataz, Toutain, Tenbrinck '16]

Goal

- Build a graph using image patches and local neighbors:

 → nonlocal relationships for vertices in border zone
 → local connection for inner nodes in A
- 2. Solve $\Delta_{\infty}f(u) = 0$ for all vertices $u \in A \subset V$
- 3. Add border nodes to ∂A and repeat until $A = \emptyset$.

[[]Elmoataz, Toutain, Tenbrinck '16]

Goal

- Build a graph using image patches and local neighbors:

 → nonlocal relationships for vertices in border zone
 → local connection for inner nodes in A
- 2. Solve $\Delta_{\infty}f(u) = 0$ for all vertices $u \in A \subset V$
- 3. Add border nodes to ∂A and repeat until $A = \emptyset$.

[[]Elmoataz, Toutain, Tenbrinck '16]

Goal

- Build a graph using image patches and local neighbors:

 → nonlocal relationships for vertices in border zone
 → local connection for inner nodes in A
- 2. Solve $\Delta_{\infty}f(u) = 0$ for all vertices $u \in A \subset V$
- 3. Add border nodes to ∂A and repeat until $A = \emptyset$.

[[]Elmoataz, Toutain, Tenbrinck '16]

Inpainting of vector-valued data

a lost area (white)

a lost area (white)

Inpainting of vector-valued data

inpainted componentwise $(\mathcal{M} = \mathbb{R} \text{ per channel})$ [Elmoataz, Toutain, Tenbrinck, '16]

Inpainting of vector-valued data

inpainted componentwise $(\mathcal{M} = \mathbb{R} \text{ per channel})$ [Elmoataz, Toutain, Tenbrinck, '16] inpainted vector-valued $(\mathcal{M} = \underset{[\mathsf{RB}, \text{ Tenbrinck, '18}]}{\mathbb{R}^3}$

manifold $\mathcal{M} = \mathcal{P}(2)$, graph construction from previous slide

Original data

manifold $\mathcal{M} = \mathcal{P}(2)$, graph construction from previous slide

Original data

manifold $\mathcal{M} = \mathcal{P}(2)$, graph construction from previous slide

Inpainting with 25 neighbors, patch size 6

manifold $\mathcal{M} = \mathcal{P}(2)$, graph construction from previous slide

Inpainting with 5 neighbors, patch size 6

manifold $\mathcal{M} = \mathcal{P}(2)$, graph construction from previous slide

Original data

Inpainting of directional data

manifold $\mathcal{M} = \mathbb{S}^2$, graph construction from previous slide.

Original data

Inpainting of directional data

manifold $\mathcal{M} = \mathbb{S}^2$, graph construction from previous slide.

Original data

manifold $\mathcal{M} = \mathbb{S}^2$, graph construction from previous slide.

Inpainting with first and second order TV

Inpainting of directional data

manifold $\mathcal{M} = \mathbb{S}^2$, graph construction from previous slide.

Inpainted with graph ∞ -Laplace

Inpainting of directional data

manifold $\mathcal{M} = \mathbb{S}^2$, graph construction from previous slide.

Original data

Conclusion

- \cdot graphs model both local and nonlocal features
- $\cdot\,$ manifold-valued graph $\infty\text{-Laplacian}$ for inpainting
- inpaint structure on manifold-valued data

- \cdot graphs model both local and nonlocal features
- manifold-valued graph ∞ -Laplacian for inpainting
- inpaint structure on manifold-valued data

Future work

- consistency
- other graph based PDEs
- other image processing tasks (segmentation)
- other numerical schemes

Literature

- RB and D. Tenbrinck. "A Graph Framework for manifold-valued Data". In: SIAM J. Imaging Sci. 11 (1 2018), pp. 325–360. arXiv: 1702.05293.

RB and D. Tenbrinck. Nonlocal Inpainting of Manifold-valued Data on Finite Weighted Graphs. GSI'17. 2017. arXiv: 1704.06424.

- A. Elmoataz, M. Toutain, and D. Tenbrinck. "On the *p*-Laplacian and ∞-Laplacian on Graphs with Applications in Image and Data
 Processing". In: SIAM J. Imag. Sci. 8.4 (2015), pp. 2412–2451.
- A. M. Oberman. "A convergent difference Scheme for the Infinity Laplacian: Construction of absolutely minimizing Lipschitz extensions". In: *Math. Comp.* 74.251 (2004), pp. 1217–1230.

Open source Matlab software MVIRT:

http://ronnybergmann.net/mvirt/