Nonlocal inpainting of manifold-valued data on finite weighted graphs

Ronny Bergmann ${ }^{1}$, Daniel Tenbrinck ${ }^{2}$

${ }^{1}$ TU Chemnitz, ${ }^{2}$ WWU Münster

Minisymposium 31.3: Variational Approaches for Regularizing Nonlinear Geometric Data, SIAM Imaging 2018,

Bologna, June 7, 2018

Manifold-valued image processing

Manifold-valued images and data

New data aquisition modalities \Rightarrow non-Euclidean range of data

- Interferometric synthetic aperture radar (InSAR)
- Surface normals
- Diffusion tensors in magnetic resonance imaging (DT-MRI)
- Electron backscattered diffraction (EBSD)
- Directional data: wind, flow, GPS,...

InSAR data of Mt. Vesuvius
[Rocca, Prati, Guarnieri 1997]
phase valued data, \mathbb{S}^{1}

Manifold-valued images and data

New data aquisition modalities \Rightarrow non-Euclidean range of data

- Interferometric synthetic aperture radar (InSAR)
- Surface normals
- Diffusion tensors in magnetic resonance imaging (DT-MRI)
- Electron backscattered diffraction (EBSD)
- Directional data: wind, flow, GPS,...

National elevation dataset
[Gesch, Evans, Mauck, 2009]
directional data, \mathbb{S}^{2}

Manifold-valued images and data

New data aquisition modalities \Rightarrow non-Euclidean range of data

- Interferometric synthetic aperture radar (InSAR)
- Surface normals
- Diffusion tensors in magnetic resonance imaging (DT-MRI)
- Electron backscattered diffraction (EBSD)
- Directional data: wind,

the Camino data set http://cmic.cs.ucl.ac.uk/camino
sym. pos. def. Matrices, $\mathcal{P}(3)$

Manifold-valued images and data

New data aquisition modalities \Rightarrow non-Euclidean range of data

- Interferometric synthetic aperture radar (InSAR)
- Surface normals
- Diffusion tensors in magnetic resonance imaging (DT-MRI)
- Electron backscattered diffraction (EBSD)
- Directional data: wind, flow, GPS,...

Slice \# 28 from the Camino data set http://cmic.cs.ucl.ac.uk/camino
sym. pos. def. Matrices, $\mathcal{P}(3)$

Manifold-valued images and data

New data aquisition modalities \Rightarrow non-Euclidean range of data

- Interferometric synthetic aperture radar (InSAR)
- Surface normals
- Diffusion tensors in magnetic resonance imaging (DT-MRI)
- Electron backscattered diffraction (EBSD)
- Directional data: wind, flow, GPS,...

EBSD example from the MTEX toolbox
[Bachmann, Hielscher, since 2005]
rotations (mod. symmetry), $\mathrm{SO}(3) / \mathcal{S}$.

Manifold-valued images and data

New data aquisition modalities \Rightarrow non-Euclidean range of data

- Interferometric synthetic aperture radar (InSAR)
- Surface normals
- Diffusion tensors in magnetic resonance imaging (DT-MRI)
- Electron backscattered diffraction (EBSD)
- Directional data: wind, flow, GPS,...

Common properties

- The values lie on a Riemannian manifold
- tasks from "classical" image processing
- e.g. inpainting

A d-dimensional Riemannian Manifold \mathcal{M}

A d-dimensional Riemannian manifold can be informally defined as a set \mathcal{M} covered with a 'suitable' collection of charts, that identify subsets of \mathcal{M} with open subsets of \mathbb{R}^{d} and a continously varying inner product on the tangential spaces.

A d-dimensional Riemannian Manifold \mathcal{M}

Geodesic $\gamma_{\widehat{x, y}}$ shortest connection (on \mathcal{M}) between $x, y \in \mathcal{M}$ Tangent space $\mathrm{T}_{x} \mathcal{M}$ at x, with inner product $\langle\cdot, \cdot\rangle_{x}$
Logarithmic map $\log _{x} y=\dot{\gamma}_{\widehat{x, y}}(0)$ "speed towards y "
Exponential map $\exp _{x} \xi_{x}=\gamma(1)$, where $\gamma(0)=x, \dot{\gamma}(0)=\xi_{x}$ Parallel transport $\mathrm{PT}_{x \rightarrow y}(\nu)$ of $\nu \in \mathrm{T}_{x} \mathcal{M}$ along $\gamma_{\widehat{x, y}}$

Finite weighted graphs

A finite weighted graph $G=(V, E, w)$ consists of

- a finite set of nodes V
- a finite set of directed edges $E \subset V \times V$
- a (symmetric) weight function $w: V \times V \rightarrow \mathbb{R}^{+}$,

$$
w(u, v)=0 \text { for } v \nsim u .
$$

Euclidean graph framework

Application data on

a nonlocal neighborhood

a surface

Source: Wikipedia
a social
network graph
is represented by a vertex function $f: V \rightarrow \mathbb{R}^{m}$
"Anything can be modeled as a graph"

Variational optimization problems

Goal: A Minimizer of a Variational Model $\mathcal{E}: \mathcal{H}(V ; \mathcal{M}) \rightarrow \mathbb{R}$ the anisotropic energy functional
[Lellmann, Strekalovskiy, Kötters, Cremers, '13; Weinmann, Demaret, Storath, '14; RB, Persch, Steidl, '16]

$$
\mathcal{E}_{\mathrm{a}}(f):=\frac{\lambda}{2} \sum_{u \in V} d_{\mathcal{M}}^{2}\left(f_{0}(u), f(u)\right)+\frac{1}{p} \sum_{(u, v) \in E}\|\nabla f(u, v)\|_{f(u)}^{p}
$$

and the isotropic energy functional
[RB, Chan, Hielscher, Persch, Steidl, '16]

$$
\mathcal{E}_{\mathrm{i}}(f):=\frac{\lambda}{2} \sum_{u \in V} d_{\mathcal{M}}^{2}\left(f_{0}(u), f(u)\right)+\frac{1}{p} \sum_{u \in V}\left(\sum_{v \sim u}\|\nabla f(u, v)\|_{f(u)}^{2}\right)^{p / 2}
$$

The graph p-Laplace for manifold-valued data

We recently defined p-Graph-Laplacians:

- anisotropic $\Delta_{p}^{\mathrm{a}}: \mathcal{H}(V ; \mathcal{M}) \rightarrow \mathcal{H}(V ; T \mathcal{M})$ by

$$
\begin{aligned}
\Delta_{p}^{\mathrm{a}} f(u) & :=\operatorname{div}\left(\|\nabla f\|_{f(\cdot)}^{p-2} \nabla f\right)(u) \\
& =-\sum_{v \sim u} \sqrt{w(u, v)}^{p} d_{\mathcal{M}}^{p-2}(f(u), f(v)) \log _{f(u)} f(v)
\end{aligned}
$$

- isotropic $\Delta_{p}^{\mathrm{i}}: \mathcal{H}(V ; \mathcal{M}) \rightarrow \mathcal{H}\left(V ; T_{f} \mathcal{M}\right)$ by

$$
\begin{aligned}
\Delta_{p}^{\mathrm{i}} f(u) & :=\operatorname{div}\left(\|\nabla f\|_{2, f(\cdot)}^{p-2} \nabla f\right)(u) \\
& =-b_{\mathrm{i}}(u) \sum_{v \sim u} w(u, v) \log _{f(u)} f(v),
\end{aligned}
$$

where

$$
b_{\mathrm{i}}(u):=\|\nabla f\|_{2, f(u)}^{p-2}=\left(\sum_{v \sim u} w(u, v) d_{\mathcal{M}}^{2}(f(u), f(v))\right)^{\frac{p-2}{2}} .
$$

The real-valued graph ∞-Laplacian

The real-valued ∞-Laplacian

Let $\Omega \subset \mathbb{R}^{d}$ be a bounded, open set and $f: \Omega \rightarrow \mathbb{R}$ smooth.

The infinity Laplacian $\Delta_{\infty} f$ in $x \in \Omega$ is defined as
[Crandall, Evans, Gariepy '01]

$$
\Delta_{\infty} f(x)=\sum_{j=1}^{d} \sum_{k=1}^{d} \frac{\partial f}{\partial x_{j}} \frac{\partial f}{\partial x_{k}} \frac{\partial^{2} f}{\partial x_{j} x_{k}}(x)
$$

Applications in image interpolation and (stucture) inpainting.
[Caselles, Morel, Sbert '98]

A min-max discretization

Based on a simple approximation by min- and max-values in a neighborhood
[Obermann, '04]

$$
\Delta_{\infty} f(x)=\frac{1}{r^{2}}\left(\min _{y \in B_{r}(x)} f(y)+\max _{y \in B_{r}(x)} f(y)-2 f(x)\right)+\mathcal{O}\left(r^{2}\right)
$$

a real-valued graph-based variant reads
[Elmoataz, Desquensnes, Lakhdari '14]

$$
\begin{aligned}
\Delta_{\infty} f(u)= & \left\|\nabla^{+} f(u)\right\|_{\infty}-\left\|\nabla^{-} f(u)\right\|_{\infty} \\
= & \max _{v \sim u}|\min (\sqrt{w(u, v)}(f(v)-f(u)), 0)| \\
& -\max _{v \sim u}|\max (\sqrt{w(u, v)}(f(v)-f(u)), 0)|
\end{aligned}
$$

Connection to AML extensions

Observation

Any (unique) viscosity solution f^{*} of the Dirichlet problem

$$
\begin{cases}-\Delta_{\infty} f(x)=0, & \text { for } x \in \Omega \\ f(x)=\varphi(x), & \text { for } x \in \partial \Omega\end{cases}
$$

is an absolutely minimizing Lipschitz extension (AML) of φ, ie.,

$$
f^{*}(x)=g(x) \text { for } x \in \partial \Sigma \Rightarrow\left\|D f^{*}\right\|_{L^{\infty}(\Sigma)} \leq\|D g\|_{L^{\infty}(\Sigma)},
$$

for every open, bounded subset $\Sigma \subset \Omega$ and every $g \in C(\bar{\Sigma})$

Connection to AML extensions

Observation

Any (unique) viscosity solution f^{*} of the Dirichlet problem

$$
\begin{cases}-\Delta_{\infty} f(x)=0, & \text { for } x \in \Omega \\ f(x)=\varphi(x), & \text { for } x \in \partial \Omega\end{cases}
$$

is an absolutely minimizing Lipschitz extension (AML) of φ, ie.,

$$
f^{*}(x)=g(x) \text { for } x \in \partial \Sigma \Rightarrow\left\|D f^{*}\right\|_{L^{\infty}(\Sigma)} \leq\|D g\|_{L^{\infty}(\Sigma)},
$$

for every open, bounded subset $\Sigma \subset \Omega$ and every $g \in C(\bar{\Sigma})$
\Rightarrow minimize locally the discrete Lipschitz constant [Obermann, '04]

$$
\min _{f\left(x_{0}\right)} L\left(f\left(x_{0}\right)\right) \quad \text { with } \quad L\left(f\left(x_{0}\right)\right)=\max _{x_{j} \sim x_{0}} \frac{\left|f\left(x_{0}\right)-f\left(x_{j}\right)\right|}{\left\|x_{0}-x_{j}\right\|}
$$

Connection to AML extensions

Observation
[Aronsson '67; Jensen '93]
Any (unique) viscosity solution f^{*} of the Dirichlet problem

$$
\begin{cases}-\Delta_{\infty} f(x)=0, & \text { for } x \in \Omega \\ f(x)=\varphi(x), & \text { for } x \in \partial \Omega\end{cases}
$$

is an absolutely minimizing Lipschitz extension (AML) of φ, ie.,

$$
f^{*}(x)=g(x) \text { for } x \in \partial \Sigma \Rightarrow\left\|D f^{*}\right\|_{L^{\infty}(\Sigma)} \leq\|D g\|_{L^{\infty}(\Sigma)}
$$

for every open, bounded subset $\Sigma \subset \Omega$ and every $g \in C(\bar{\Sigma})$
\Rightarrow minimize locally the discrete Lipschitz constant [Obermann, '04]

$$
\min _{f\left(x_{0}\right)} L\left(f\left(x_{0}\right)\right) \quad \text { with } \quad L\left(f\left(x_{0}\right)\right)=\max _{x_{j} \sim x_{0}} \frac{\left|f\left(x_{0}\right)-f\left(x_{j}\right)\right|}{\left\|x_{0}-x_{j}\right\|}
$$

\Rightarrow consistent scheme for solving $-\Delta_{\infty} f=0$.

Constructing discrete Lipschitz extensions

On \mathbb{R} the infinity Laplace operator can be approximated by

$$
\Delta_{\infty} f\left(x_{0}\right)=\frac{1}{\left\|x_{0}-x_{j}^{*}\right\|+\left\|x_{0}-x_{i}^{*}\right\|}\left(\frac{f\left(x_{0}\right)-f\left(x_{j}^{*}\right)}{\left\|x_{0}-x_{j}^{*}\right\|}+\frac{f\left(x_{0}\right)-f\left(x_{i}^{*}\right)}{\left\|x_{0}-x_{i}^{*}\right\|}\right)
$$

where the neighbors $\left(x_{i}^{*}, x_{j}^{*}\right)$ are determined by
[Obermann, '04]

$$
\left(x_{i}^{*}, x_{j}^{*}\right)=\underset{x_{i}, x_{j} \sim x_{0}}{\operatorname{argmax}} \frac{\mid f\left(x_{i}\right)}{\left\|x_{0}-x_{i}\right\|+\left\|x_{0}-x_{j}\right\|}
$$

Constructing discrete Lipschitz extensions

On \mathbb{R} the infinity Laplace operator can be approximated by

$$
\Delta_{\infty} f\left(x_{0}\right)=\frac{1}{\left\|x_{0}-x_{j}^{*}\right\|+\left\|x_{0}-x_{i}^{*}\right\|}\left(\frac{f\left(x_{0}\right)-f\left(x_{j}^{*}\right)}{\left\|x_{0}-x_{j}^{*}\right\|}+\frac{f\left(x_{0}\right)-f\left(x_{i}^{*}\right)}{\left\|x_{0}-x_{i}^{*}\right\|}\right)
$$

where the neighbors $\left(x_{i}^{*}, x_{j}^{*}\right)$ are determined by
[Obermann, '04]

$$
\left(x_{i}^{*}, x_{j}^{*}\right)=\underset{x_{i}, x_{j} \sim x_{0}}{\operatorname{argmax}} \frac{\left|\left(f\left(x_{i}\right)-f\left(x_{0}\right)\right)-\left(f\left(x_{j}\right)-f\left(x_{0}\right)\right)\right|}{\left\|x_{0}-x_{i}\right\|+\left\|x_{0}-x_{j}\right\|}
$$

Constructing discrete Lipschitz extensions

On \mathbb{R}^{m} the infinity Laplace operator can be approximated by

$$
\Delta_{\infty} f\left(x_{0}\right)=\frac{1}{\left\|x_{0}-x_{j}^{*}\right\|+\left\|x_{0}-x_{i}^{*}\right\|}\left(\frac{f\left(x_{0}\right)-f\left(x_{j}^{*}\right)}{\left\|x_{0}-x_{j}^{*}\right\|}+\frac{f\left(x_{0}\right)-f\left(x_{i}^{*}\right)}{\left\|x_{0}-x_{i}^{*}\right\|}\right)
$$

where the neighbors $\left(x_{i}^{*}, x_{j}^{*}\right)$ are determined by
[Obermann, 'O4; RB, Tenbrinck, '17]

$$
\left(x_{i}^{*}, x_{j}^{*}\right)=\underset{x_{i}, x_{j} \sim x_{0}}{\operatorname{argmax}} \frac{\left\|\left(f\left(x_{i}\right)-f\left(x_{0}\right)\right)-\left(f\left(x_{j}\right)-f\left(x_{0}\right)\right)\right\|}{\left\|x_{0}-x_{i}\right\|+\left\|x_{0}-x_{j}\right\|}
$$

The manifold-valued graph ∞-Laplacian

Graph ∞-Laplacian for manifold-valued data

We define the graph- ∞-Laplace operator
for manifold valued data $\Delta_{\infty} f$ in a vertex $u \in V$ as

$$
\Delta_{\infty} f(u):=\frac{\sqrt{w\left(u, v_{1}^{*}\right)} \log _{f(u)} f\left(v_{1}^{*}\right)+\sqrt{w\left(u, v_{2}^{*}\right)} \log _{f(u)} f\left(v_{2}^{*}\right)}{\sqrt{w\left(u, v_{1}^{*}\right)}+\sqrt{w\left(u, v_{2}^{*}\right)}}
$$

where $v_{1}^{*}, v_{2}^{*} \in \mathcal{N}(u)$ maximize the discrete Lipschitz constant in the local tangent space $T_{f(u)} \mathcal{M}$ among all neighbors, i.e.,
$\left(v_{1}^{*}, v_{2}^{*}\right)$
$=\underset{\left(v_{1}, v_{2}\right) \in \mathcal{N}^{2}(u)}{\operatorname{argmax}}\left\|\sqrt{w\left(u, v_{1}\right)} \log _{f(u)} f\left(v_{1}\right)-\sqrt{w\left(u, v_{2}\right)} \log _{f(u)} f\left(v_{2}\right)\right\|_{f(u)}$

Numerical iteration scheme

to solve

$$
\begin{cases}\Delta_{\infty} f(u)=0 & \text { for all } u \in U \\ f(u)=g(u) & \text { for all } u \in V / U\end{cases}
$$

we introduce an artificial time dimension t, i.e.

$$
\begin{cases}\frac{\partial f}{\partial t}(u, t)=\Delta_{\infty} f(u, t) & \text { for all } u \in U, t \in(0, \infty) \\ f(u, 0)=f_{0}(u) & \text { for all } u \in U, \\ f(u, t)=g(u, t) & \text { for all } u \in V / U, t \in[0, \infty)\end{cases}
$$

Numerical iteration scheme II

For any $u \in V, p \in \mathbb{R}^{+} \cup\{\infty\}, \lambda \geq 0$, we aim to solve

$$
0 \stackrel{!}{=} \Delta_{p} f(u)-\lambda \log _{f(u)} f_{0}(u) \in \mathrm{T}_{f(u)} \mathcal{M}
$$

Algorithm. Forward difference or explicit scheme:

$$
f_{n+1}(u)=\exp _{f_{n}(u)}\left(\Delta t\left(\Delta_{p} f_{n}(u)-\lambda \log _{f_{n}(u)} f_{0}(u)\right)\right)
$$

! to meet CFL conditions: small Δt necessary

Numerical examples

Interpolation of structure

Goal Inpaint $A \subset V$ using information in $\partial A=V / A$.

[Elmoataz, Toutain, Tenbrinck '16]

Interpolation of structure

Goal Inpaint $A \subset V$ using information in $\partial A=V / A$.

[Elmoataz, Toutain, Tenbrinck '16]

1. Build a graph using image patches and local neighbors:

Interpolation of structure

Goal

Inpaint $A \subset V$ using information in $\partial A=V / A$.
[Elmoataz, Toutain, Tenbrinck '16]

1. Build a graph using image patches and local neighbors: \rightarrow nonlocal relationships for vertices in border zone (red) \rightarrow local connection for inner nodes in A

Interpolation of structure

Goal

Inpaint $A \subset V$ using information in $\partial A=V / A$.
[Elmoataz, Toutain, Tenbrinck '16]

1. Build a graph using image patches and local neighbors: \rightarrow nonlocal relationships for vertices in border zone (red)
\rightarrow local connection for inner nodes in A
2. Solve $\Delta_{\infty} f(u)=0$ for all vertices $u \in A \subset V$

Interpolation of structure

Goal

Inpaint $A \subset V$ using information in $\partial A=V / A$.
[Elmoataz, Toutain, Tenbrinck '16]

1. Build a graph using image patches and local neighbors:
\rightarrow nonlocal relationships for vertices in border zone
\rightarrow local connection for inner nodes in A
2. Solve $\Delta_{\infty} f(u)=0$ for all vertices $u \in A \subset V$
3. Add border nodes to ∂A and repeat until $A=\emptyset$.

Interpolation of structure

Goal

Inpaint $A \subset V$ using information in $\partial A=V / A$.
[Elmoataz, Toutain, Tenbrinck '16]

1. Build a graph using image patches and local neighbors:
\rightarrow nonlocal relationships for vertices in border zone
\rightarrow local connection for inner nodes in A
2. Solve $\Delta_{\infty} f(u)=0$ for all vertices $u \in A \subset V$
3. Add border nodes to ∂A and repeat until $A=\emptyset$.

Interpolation of structure

Goal

Inpaint $A \subset V$ using information in $\partial A=V / A$.
[Elmoataz, Toutain, Tenbrinck '16]

1. Build a graph using image patches and local neighbors:
\rightarrow nonlocal relationships for vertices in border zone
\rightarrow local connection for inner nodes in A
2. Solve $\Delta_{\infty} f(u)=0$ for all vertices $u \in A \subset V$
3. Add border nodes to ∂A and repeat until $A=\emptyset$.

Interpolation of structure

Goal

Inpaint $A \subset V$ using information in $\partial A=V / A$.
[Elmoataz, Toutain, Tenbrinck '16]

1. Build a graph using image patches and local neighbors:
\rightarrow nonlocal relationships for vertices in border zone
\rightarrow local connection for inner nodes in A
2. Solve $\Delta_{\infty} f(u)=0$ for all vertices $u \in A \subset V$
3. Add border nodes to ∂A and repeat until $A=\emptyset$.

Interpolation of structure

Goal

Inpaint $A \subset V$ using information in $\partial A=V / A$.
[Elmoataz, Toutain, Tenbrinck '16]

1. Build a graph using image patches and local neighbors:
\rightarrow nonlocal relationships for vertices in border zone
\rightarrow local connection for inner nodes in A
2. Solve $\Delta_{\infty} f(u)=0$ for all vertices $u \in A \subset V$
3. Add border nodes to ∂A and repeat until $A=\emptyset$.

Interpolation of structure

Goal

Inpaint $A \subset V$ using information in $\partial A=V / A$.
[Elmoataz, Toutain, Tenbrinck '16]

1. Build a graph using image patches and local neighbors:
\rightarrow nonlocal relationships for vertices in border zone
\rightarrow local connection for inner nodes in A
2. Solve $\Delta_{\infty} f(u)=0$ for all vertices $u \in A \subset V$
3. Add border nodes to ∂A and repeat until $A=\emptyset$.

Interpolation of structure

Goal

Inpaint $A \subset V$ using information in $\partial A=V / A$.
[Elmoataz, Toutain, Tenbrinck '16]

1. Build a graph using image patches and local neighbors:
\rightarrow nonlocal relationships for vertices in border zone
\rightarrow local connection for inner nodes in A
2. Solve $\Delta_{\infty} f(u)=0$ for all vertices $u \in A \subset V$
3. Add border nodes to ∂A and repeat until $A=\emptyset$.

Interpolation of structure

Goal

Inpaint $A \subset V$ using information in $\partial A=V / A$.
[Elmoataz, Toutain, Tenbrinck '16]

1. Build a graph using image patches and local neighbors:
\rightarrow nonlocal relationships for vertices in border zone
\rightarrow local connection for inner nodes in A
2. Solve $\Delta_{\infty} f(u)=0$ for all vertices $u \in A \subset V$
3. Add border nodes to ∂A and repeat until $A=\emptyset$.

Interpolation of structure

Goal

Inpaint $A \subset V$ using information in $\partial A=V / A$.
[Elmoataz, Toutain, Tenbrinck '16]

1. Build a graph using image patches and local neighbors:
\rightarrow nonlocal relationships for vertices in border zone
\rightarrow local connection for inner nodes in A
2. Solve $\Delta_{\infty} f(u)=0$ for all vertices $u \in A \subset V$
3. Add border nodes to ∂A and repeat until $A=\emptyset$.

Inpainting of vector-valued data

a lost area (white)

a lost area (white)

Inpainting of vector-valued data

inpainted componentwise ($\mathcal{M}=\mathbb{R}$ per channel)
[Elmoataz, Toutain, Tenbrinck, '16]

Inpainting of vector-valued data

inpainted componentwise ($\mathcal{M}=\mathbb{R}$ per channel) [Elmoataz, Toutain, Tenbrinck, '16]

inpainted vector-valued

$$
\left(\mathcal{M}=\frac{\left.\mathbb{R}^{3}\right)}{[R B, \text { Tenbrinck, '18] }}\right.
$$

Inpainting of symmetric positive definite matrices

manifold $\mathcal{M}=\mathcal{P}(2)$, graph construction from previous slide

Original data

Inpainting of symmetric positive definite matrices

manifold $\mathcal{M}=\mathcal{P}(2)$, graph construction from previous slide

Original data

Given (lossy) data

Inpainting of symmetric positive definite matrices

manifold $\mathcal{M}=\mathcal{P}(2)$, graph construction from previous slide

Inpainting with
25 neighbors, patch size 6

Given (lossy) data

Inpainting of symmetric positive definite matrices

manifold $\mathcal{M}=\mathcal{P}(2)$, graph construction from previous slide

Inpainting with
5 neighbors, patch size 6

Given (lossy) data

Inpainting of symmetric positive definite matrices

manifold $\mathcal{M}=\mathcal{P}(2)$, graph construction from previous slide

Original data

Given (lossy) data

Inpainting of directional data

Inpainting of directional data

Inpainting of directional data

first and second order TV

Inpainting of directional data

Inpainting of directional data

Conclusion

Conclusion

- graphs model both local and nonlocal features
- manifold-valued graph ∞-Laplacian for inpainting
- inpaint structure on manifold-valued data

Conclusion

- graphs model both local and nonlocal features
- manifold-valued graph ∞-Laplacian for inpainting
- inpaint structure on manifold-valued data

Future work

- consistency
- other graph based PDEs
- other image processing tasks (segmentation)
- other numerical schemes

Literature

E
RB and D. Tenbrinck. "A Graph Framework for manifold-valued Data". In: SIAM J. Imaging Sci. 11 (1 2018), pp. 325-360. arXiv: 1702.05293.

RB and D. Tenbrinck. Nonlocal Inpainting of Manifold-valued Data on Finite Weighted Graphs. GSI'17. 2017. arXiv: 1704.06424.
A. Elmoataz, M. Toutain, and D. Tenbrinck. "On the p-Laplacian and ∞-Laplacian on Graphs with Applications in Image and Data Processing". In: SIAM J. Imag. Sci. 8.4 (2015), pp. 2412-2451.
R
A. M. Oberman. "A convergent difference Scheme for the Infinity Laplacian: Construction of absolutely minimizing Lipschitz extensions". In: Math. Comp. 74.251 (2004), pp. 1217-1230.

Open source Matlab software MVIRT:
http://ronnybergmann.net/mvirt/

