Variational Methods for Manifold-valued Image Processing^a

Ronny Bergmann

Technische Universität Chemnitz

Seminar "Theory and Algorithms in Data Science", Alan Turing Institute,

London, September 3rd, 2018.

^a supported by DFG Grant BE 5888/2-1

Contents

- 1. Introduction
 - Manifold-valued images & data
 - Variational models
 - Riemannian manifolds
- 2. Total variation regularization
 - First and second order differences
 - Cyclic proximal point algorithm
 - Numerical examples I
- 3. The graph p-Laplacian
 - The finite weighted graph framework
 - the manifold-valued graph *p*-Laplacian
 - Numerical examples II

Introduction

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

InSAR-Data of Mt. Vesuvius [Rocca, Prati, Guarnieri 1997]

phase-valued data, $\mathcal{M}=\mathbb{S}^1$

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

InSAR-Data of Mt. Vesuvius [Rocca, Prati, Guarnieri 1997]

phase-valued data, $\mathcal{M} = \mathbb{S}^1$

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

National elevation dataset [Gesch, Evans, Mauck, 2009]

directional data, $\mathcal{M} = \mathbb{S}^2$

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

diffusion tensors in human brain from the Camino dataset http://cmic.cs.ucl.ac.uk/camino

sym. pos. def. matrices, $\mathcal{M} = \mathrm{SPD}(3)$

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

horizontal slice #28 from the Camino dataset http://cmic.cs.ucLac.uk/camino sym. pos. def. matrices, $\mathcal{M} = \mathrm{SPD}(3)$

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

EBSD example from the MTEX toolbox [Bachmann, Hielscher, since 2005] Rotations (mod. symmetry), $\mathcal{M} = \mathrm{SO}(3)(/\mathcal{S}).$

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

Common properties

- Range of values is a Riemannian manifold
- Tasks from "classical" image processing, e.g.
 - denoising
 - inpainting
 - labeling
 - deblurring

Setting. From $u_0 \colon \mathbb{R}^m \supset \Omega \to \mathbb{R}^n$ we observe $f \coloneqq Ku_0 + \eta$ with

- \cdot a linear operator K
- Gaussian white noise η

Task. Reconstruct u_0 from given data f.

Ansatz. Compute minimizer u^* of the variational model

$$\mathcal{E}(u) \coloneqq \mathcal{D}(u; f) + \alpha \mathcal{R}(u), \quad \alpha > 0,$$

with

- similarity or data fidelity term $\mathcal{D}(u; f) = ||Ku f||_{L_2}^2$
- \cdot reguilarizer $\mathcal{R}(u)$ containing a priori knowledge about u_0

Intuition. Smoothen f while keeping its main features

- Tichonov-Regulariser (*H*¹-Seminorm)
- first order derivative
- second order derivative
- · combine first and second order derivatives

Tichonov.

Intuition. Smoothen f while keeping its main features

- Tichonov-Regulariser (*H*¹-Seminorm)
- first order derivative
- second order derivative
- · combine first and second order derivatives

first order.

Intuition. Smoothen f while keeping its main features

- Tichonov-Regulariser (*H*¹-Seminorm)
- first order derivative
- second order derivative
- · combine first and second order derivatives

first plus second order.

 $u_0.$

Intuition. Smoothen f while keeping its main features

- Tichonov-Regulariser (*H*¹-Seminorm)
- first order derivative
- second order derivative
- · combine first and second order derivatives

TGV

images (adapted) from [Setzer, Steidl, Teuber, 2009] 4

Digital Images

For $\Omega \supset [1, N] \times [1, M]$ set $\mathcal{G} = \Omega \cap \mathbb{Z}^2 = \{1, \dots, N\} \times \{1, \dots, M\}$. We define the (discrete) Total Variation (TV) by

$$\mathrm{TV}(u) = \|\nabla u\|_{2,1} = \sum_{(i,j)\in\mathcal{G}} \left\| \left((\nabla_x u)_{i,j} \quad (\nabla_y u)_{i,j} \right) \right)^{\mathrm{T}} \right\|_2$$

with forward differences of $u \colon \mathcal{G} \to \mathbb{R}$ as

$$(\nabla_x u)_{i,j} = \begin{cases} u_{i+1,j} - u_{i,j} & \text{if } i < N, \\ 0 & \text{else,} \end{cases}$$
$$(\nabla_y u)_{i,j} = \begin{cases} u_{i,j+1} - u_{i,j} & \text{if } j < M, \\ 0 & \text{else.} \end{cases}$$

Digital Images

For $\Omega \supset [1, N] \times [1, M]$ set $\mathcal{G} = \Omega \cap \mathbb{Z}^2 = \{1, \dots, N\} \times \{1, \dots, M\}$. We define the (discrete) Total Variation (TV) by

$$\mathrm{TV}(u) = \|\nabla u\|_{2,1} = \sum_{(i,j)\in\mathcal{G}} \left\| \left((\nabla_x u)_{i,j} \quad (\nabla_y u)_{i,j} \right) \right)^{\mathrm{T}} \right\|_2$$

with forward differences of $u \colon \mathcal{G} \to \mathbb{R}$ as

$$(\nabla_x u)_{i,j} = \begin{cases} u_{i+1,j} - u_{i,j} & \text{if } i < N, \\ 0 & \text{else,} \end{cases}$$
$$(\nabla_y u)_{i,j} = \begin{cases} u_{i,j+1} - u_{i,j} & \text{if } j < M, \\ 0 & \text{else.} \end{cases}$$

With backward differences $\tilde{\nabla}_x u, \tilde{\nabla}_y u$: Second Order TV

$$\mathrm{TV}_{2}(u) = \|\nabla^{2}u\|_{2,1}, \quad \nabla^{2} = \left(\tilde{\nabla}_{x}\nabla_{x} \quad \frac{1}{2}(\tilde{\nabla}_{x}\nabla_{y} + \tilde{\nabla}_{y}\nabla_{x}) \quad \tilde{\nabla}_{y}\nabla_{y}\right)^{\mathrm{T}}.$$

Reconstruct $u_0: \mathcal{G} \to \mathbb{R}^n$ from measurements $f: \mathcal{G} \supset \mathcal{V} \to \mathbb{R}^n$ Ansatz. Compute minimizer u^* of the variational model

$$\begin{aligned} \mathcal{E}(u) \coloneqq & \mathcal{D}(u;f) & + & \alpha \; \mathcal{R}(u), \quad \alpha > 0, \\ & \text{data fidelity} & \text{regulariser} \end{aligned}$$

- high dimensional, $\mathcal{E} : \mathbb{R}^{NMn} \to \mathbb{R}$
- not differentiable
- (often) convex

Reconstruct $u_0: \mathcal{G} \to \mathbb{R}^n$ from measurements $f: \mathcal{G} \supset \mathcal{V} \to \mathbb{R}^n$ Ansatz. Compute minimizer u^* of the variational model

$$\begin{aligned} \mathcal{E}(u) &\coloneqq \quad \mathcal{D}(u;f) &+ \quad \alpha \; \mathcal{R}(u), \quad \alpha > 0, \\ \text{data fidelity} & \text{regulariser} \end{aligned}$$

- high dimensional, $\mathcal{E} : \mathbb{R}^{NMn} \to \mathbb{R}$
- not differentiable
- (often) convex

Example: TV regularizer model for a signal f

[Rudin, Osher, Fatemi, 1992]

$$\mathcal{E}(u) = \sum_{i=1}^{N} ||u_i - f_i||^2 + \alpha \sum_{i=1}^{N-1} ||u_{i+1} - u_i||$$

Reconstruct $u_0: \mathcal{G} \to \mathbb{R}^n$ from measurements $f: \mathcal{G} \supset \mathcal{V} \to \mathbb{R}^n$ Ansatz. Compute minimizer u^* of the variational model

$$\begin{aligned} \mathcal{E}(u) &\coloneqq \quad \mathcal{D}(u;f) &+ \quad \alpha \; \mathcal{R}(u), \quad \alpha > 0, \\ \text{data fidelity} & \text{regulariser} \end{aligned}$$

- high dimensional, $\mathcal{E} : \mathbb{R}^{NMn} \to \mathbb{R}$
- not differentiable
- (often) convex

Example: additive coupling model for a signal f_{i}

[Rudin, Osher, Fatemi, 1992]

$$\mathcal{E}(u) = \sum_{i=1}^{N} \|u_i - f_i\|^2 + \alpha \sum_{i=1}^{N-1} \|u_{i+1} - u_i\| + \beta \sum_{i=2}^{N-1} \|u_{i-1} - 2u_i + u_{i+1}\|$$

Reconstruct $u_0: \mathcal{G} \to \mathbb{R}^n$ from measurements $f: \mathcal{G} \supset \mathcal{V} \to \mathbb{R}^n$ Ansatz. Compute minimizer u^* of the variational model

$$\begin{aligned} \mathcal{E}(u) &\coloneqq \quad \mathcal{D}(u;f) &+ \quad \alpha \; \mathcal{R}(u), \quad \alpha > 0, \\ \text{data fidelity} & \text{regulariser} \end{aligned}$$

- high dimensional, $\mathcal{E} : \mathbb{R}^{NMn} \to \mathbb{R}$
- not differentiable
- (often) convex

Today.

Variational models for images $f: \mathcal{V} \to \mathcal{M}$ with pixel values in a Riemannian manifold \mathcal{M} .

A d-dimensional Riemannian Manifold ${\cal M}$

A *d*-dimensional Riemannian manifold can be informally defined as a set \mathcal{M} covered with a 'suitable' collection of charts, that identify subsets of \mathcal{M} with open subsets of \mathbb{R}^d and a continously varying inner product on the tangential spaces.

7

A d-dimensional Riemannian Manifold ${\cal M}$

Geodesic $\gamma_{\widehat{x,y}}$ shortest connection (on \mathcal{M}) between $x, y \in \mathcal{M}$ **Tangent space** $T_x \mathcal{M}$ at x, with inner product $\langle \cdot, \cdot \rangle_x$ **Logarithmic map** $\log_x y = \dot{\gamma}_{\widehat{x,y}}(0)$ "speed towards y" **Exponential map** $\exp_x \xi_x = \gamma(1)$, where $\gamma(0) = x$, $\dot{\gamma}(0) = \xi_x$ **Parallel transport** $\operatorname{PT}_{x \to y}(\nu)$ of $\nu \in T_x \mathcal{M}$ along $\gamma_{\widehat{x,y}}$

8

- Noise: wrapped Gaussian, $\sigma = 0.2$
- noisy $f_n = (f_0 + \eta)_{2\pi}$

 \cdot Comparison of $f_{\rm 0}$ & $f_{\rm n}$ width $f_{\rm R}$

- Denoised with CPPA and realvalued TV₁, ($\alpha = \frac{3}{4}, \beta = 0$)
- $\cdot\,$ Artefacts at the "jumps that are none" from representation

- $\int Comparison of J_0 \otimes J_n \text{ which } J_1$
- Denoised with CPPA and TV_1 ($lpha=rac{3}{4},\,eta=0$)
- but: stair caising

- Denoised with CPPA and TV_2 ($\alpha = 0, \beta = \frac{3}{2}$)
- but: problems in constant areas

- Denoised with CPPA and $TV_1 \& TV_2$ ($\alpha = \frac{1}{4}, \beta = \frac{3}{4}$)
- · combined: smallest mean squarred error.

Total Variation Regularization

On \mathbb{R}^n

- line $\gamma(t) = x + t(y x)$
- distance $||x y||_2$
- first order model

$$\sum_{i \in \mathcal{V}} \|f_i - u_i\|_2^2 + \alpha \sum_{i \in \mathcal{G} \setminus \{N\}} \|u_i - u_{i+1}\|_2$$

Riemannian manifold ${\cal M}$

- geodesic path $\gamma_{\widehat{x,y}}(t)$
- geodesic distance $d \colon \mathcal{M} \times \mathcal{M} \to \mathbb{R}$
- first order model

[Strekalovskiy, Cremers, 2011; Lellmann et al., 2013; Weinmann et. al., 2014]

 $\sum_{i \in \mathcal{V}} d(f_i, u_i)^2 + \alpha \sum_{i \in \mathcal{G} \setminus \{N\}} d(u_i, u_{i+1})$

On \mathbb{R}^n

- line $\gamma(t) = x + t(y x)$
- distance $||x y||_2$
- first order model

$$\sum_{i \in \mathcal{V}} \|f_i - u_i\|_2^2 + \alpha \sum_{i \in \mathcal{G} \setminus \{N\}} \|u_i - u_{i+1}\|_2$$

second oder difference

$$\|x - 2y + z\|_2$$

Riemannian manifold ${\cal M}$

- geodesic path $\gamma_{\widehat{x,y}}(t)$
- geodesic distance $d \colon \mathcal{M} \times \mathcal{M} \to \mathbb{R}$
- first order model

[Strekalovskiy, Cremers, 2011; Lellmann et al., 2013; Weinmann et. al., 2014]

$$\sum_{i \in \mathcal{V}} d(f_i, u_i)^2 + \alpha \sum_{i \in \mathcal{G} \setminus \{N\}} d(u_i, u_{i+1})$$

 \cdot How to model that on $\mathcal{M}?$

On \mathbb{R}^n

- line $\gamma(t) = x + t(y x)$
- distance $||x y||_2$
- first order model

$$\sum_{i \in \mathcal{V}} \|f_i - u_i\|_2^2 + \alpha \sum_{i \in \mathcal{G} \setminus \{N\}} \|u_i - u_{i+1}\|_2$$

second oder difference

$$2\|\frac{1}{2}(x+z) - y\|_2$$

Riemannian manifold ${\cal M}$

- geodesic path $\gamma_{\widehat{x,y}}(t)$
- geodesic distance $d \colon \mathcal{M} \times \mathcal{M} \to \mathbb{R}$
- \cdot first order model

[Strekalovskiy, Cremers, 2011; Lellmann et al., 2013; Weinmann et. al., 2014]

$$\sum_{i \in \mathcal{V}} d(f_i, u_i)^2 + \alpha \sum_{i \in \mathcal{G} \setminus \{N\}} d(u_i, u_{i+1})$$

• idea: mid point formulation

On \mathbb{R}^n

- line $\gamma(t) = x + t(y x)$
- distance $||x y||_2$
- first order model

$$\sum_{i \in \mathcal{V}} \|f_i - u_i\|_2^2 + \alpha \sum_{i \in \mathcal{G} \setminus \{N\}} \|u_i - u_{i+1}\|_2$$

second oder difference

$$2\|c(x,z)-y\|_2$$

Riemannian manifold ${\cal M}$

- geodesic path $\gamma_{\widehat{x,y}}(t)$
- geodesic distance $d \colon \mathcal{M} \times \mathcal{M} \to \mathbb{R}$
- \cdot first order model

[Strekalovskiy, Cremers, 2011; Lellmann et al., 2013; Weinmann et, al., 2014]

$$\sum_{i \in \mathcal{V}} d(f_i, u_i)^2 + \alpha \sum_{i \in \mathcal{G} \setminus \{N\}} d(u_i, u_{i+1})$$

• idea: mid point formulation

9

A Second Order TV-type Model

Mid points between $x, z \in \mathcal{M}$:

 $\mathcal{C}_{x,z} := \left\{ c \in \mathcal{M} : c = \gamma_{\widehat{x,z}} \left(\frac{1}{2} \right) \text{ for any geodesic } \gamma_{\widehat{x,z}} : [0,1] \to \mathcal{M} \right\}$ The Absolute Second Order Difference:

$$d_2(x, y, z) \coloneqq \min_{c \in \mathcal{C}_{x,z}} d(c, y), \qquad x, y, z \in \mathcal{M}.$$

 \Rightarrow Second Order TV-type Model for \mathcal{M} -valued signals f

$$\mathcal{E}(u) \coloneqq \sum_{i \in \mathcal{V}} d(f_i, u_i)^2 + \alpha \sum_{i \in \mathcal{G} \setminus \{N\}} d(u_i, u_{i+1}) + \beta \sum_{i \in \mathcal{G} \setminus \{1, N\}} d_2(u_{i-1}, u_i, u_{i+1})$$

A Second Order TV-type Model

Mid points between $x, z \in \mathcal{M}$:

 $\mathcal{C}_{x,z} := \left\{ c \in \mathcal{M} : c = \gamma_{\widehat{x,z}} \left(\frac{1}{2} \right) \text{ for any geodesic } \gamma_{\widehat{x,z}} : [0,1] \to \mathcal{M} \right\}$ The Absolute Second Order Difference:

$$d_2(x, y, z) \coloneqq \min_{c \in \mathcal{C}_{x,z}} d(c, y), \qquad x, y, z \in \mathcal{M}.$$

 \Rightarrow Second Order TV-type Model for \mathcal{M} -valued signals f

$$\mathcal{E}(u) \coloneqq \sum_{i \in \mathcal{V}} d(f_i, u_i)^2 + \alpha \sum_{i \in \mathcal{G} \setminus \{N\}} d(u_i, u_{i+1}) + \beta \sum_{i \in \mathcal{G} \setminus \{1, N\}} d_2(u_{i-1}, u_i, u_{i+1})$$

For images additionally: use $\|w - x + y - z\|_2 = 2\|\frac{1}{2}(w + y) - \frac{1}{2}(x + z)\|_2$ for Absolute Second Order Mixed Difference

$$d_{1,1}(w,x,y,z) \coloneqq \min_{c \in \mathcal{C}_{w,y}, \tilde{c} \in \mathcal{C}_{x,z}} d(c, \tilde{c}), \qquad w, x, y, z \in \mathcal{M}.$$
For $\varphi \colon \mathcal{M}^n \to (-\infty, +\infty]$ and $\lambda > 0$ we define the Proximal Map as [Moreau, 1965; Rockafellar, 1976; Ferreira, Oliveira, 2002]

$$\operatorname{prox}_{\lambda\varphi}(g) \coloneqq \operatorname*{arg\,min}_{u \in \mathcal{M}^n} \frac{1}{2} \sum_{i=1}^n d(u_i, g_i)^2 + \lambda\varphi(u).$$

- ! For a Minimizer u^* of φ we have $\operatorname{prox}_{\lambda\varphi}(u^*) = u^*$.
- For $\varphi \colon \mathbb{R}^n \to \mathbb{R}$ proper, convex, lower semicontinuous:
 - prox unique.
 - PPA $x_k = \operatorname{prox}_{\lambda\varphi}(x_{k-1})$ converges to $\operatorname{arg\,min}\varphi$
- For $\varphi = \mathcal{E}$ not that useful

The Cyclic Proximal Point Algorithm

For
$$\varphi = \sum_{l=1}^{c} \varphi_l$$
 the

Cyclic Proximal Point-Algorithmus (CPPA) reads

$$x^{(k+\frac{l+1}{c})} = \operatorname{prox}_{\lambda_k \varphi_l}(x^{(k+\frac{l}{c})}), \quad l = 0, \dots, c-1, \ k = 0, 1, \dots$$

On a Hadamard manifold \mathcal{M} :

convergence to a minimizer of φ if

- \cdot all $arphi_l$ proper, convex, lower semicontinuous
- $\{\lambda_k\}_{k\in\mathbb{N}}\in\ell_2(\mathbb{N})\setminus\ell_1(\mathbb{N}).$

Ansatz.

- efficient Proximal Maps for every summand of $\mathcal{E}(u)$.
- speed up by parallelization

Proximal Maps for Distance and TV summands

Let $\gamma_{\widehat{x,y}}$: $[0,1] \to \mathcal{M}$ be a geodesic between $x, y \in \mathcal{M}$. **Theorem (Distance term)** For $\varphi(x) = d^2(x, f)$ with fixed $f \in \mathcal{M}$ we have

[Oliveira, Ferreira, 2002]

$$\operatorname{prox}_{\lambda\varphi}(x) = \gamma_{\widehat{x,f}} \Big(\frac{\lambda d(x,f)}{1 + \lambda d(x,f)} \Big)$$

Theorem (First Order Difference Term) For $\varphi(x, y) = d(x, y)$ we have

[Weinmann, Storath, Demaret, 2014]

$$\operatorname{prox}_{\lambda\varphi}(x,y) = (\gamma_{\widehat{x,y}}(t),\gamma_{\widehat{x,y}}(1-t))$$

with

$$t = \begin{cases} \frac{\lambda}{d(x,y)} & \text{if } \lambda < \frac{1}{2}d(x,y) \\ \frac{1}{2} & \text{else.} \end{cases}$$

Proximal Map for the TV_2 Summand

To compute

$$\operatorname{prox}_{\lambda d_2}(g) = \arg\min_{u \in \mathcal{M}^3} \left\{ \frac{1}{2} \sum_{i=1}^3 d(u_i, g_i)^2 + \lambda d_2(u_1, u_2, u_3) \right\}$$

We have

- \cdot a closed form solution for $\mathcal{M}=\mathbb{S}^1$
- use a sub gradient descent (as inner problem) with

$$\nabla_{\mathcal{M}^3} d_2 = (\nabla_{\mathcal{M}} d_2(\cdot, y, z), \nabla_{\mathcal{M}} d_2(x, \cdot, z), \nabla_{\mathcal{M}} d_2(x, y, \cdot))^{\mathrm{T}}.$$

where

$$\cdot \nabla_{\mathcal{M}} d_2(x, \cdot, z)(y) = -\frac{\log_y c(x, z)}{\|\log_y c(x, z)\|_y} \in T_y \mathcal{M}$$

• $\nabla_{\mathcal{M}} d_2(\cdot, y, z)$ and analogously $\nabla_{\mathcal{M}} d_2(\cdot, y, z)$ using Jacobi fields and a chain rule [Bačák, RB, Weinmann, Steidl, 2016]

Bernoulli's Lemniscate on the sphere \mathbb{S}^2

$$\gamma(t) := \frac{a\sqrt{2}}{\sin^2(t) + 1} (\cos(t), \cos(t)\sin(t), 1)^{\mathrm{T}}, \quad t \in [0, 2\pi], a = \frac{\pi}{2\sqrt{2}}.$$

Generate a sphere-valued signal by

noisy lemniscate of Bernoulli on \mathbb{S}^2 , Gaussian noise, $\sigma = \frac{\pi}{30}$, on $T_p \mathbb{S}^2$.

15

Bernoulli's Lemniscate on the sphere \mathbb{S}^2

$$\gamma(t) := \frac{a\sqrt{2}}{\sin^2(t) + 1} (\cos(t), \cos(t)\sin(t), 1)^{\mathrm{T}}, \quad t \in [0, 2\pi], a = \frac{\pi}{2\sqrt{2}}.$$

Generate a sphere-valued signal by

Bernoulli's Lemniscate on the sphere S²

$$\gamma(t) := \frac{a\sqrt{2}}{\sin^2(t) + 1} (\cos(t), \cos(t)\sin(t), 1)^{\mathrm{T}}, \quad t \in [0, 2\pi], a = \frac{\pi}{2\sqrt{2}}.$$

Generate a sphere-valued signal by

reconstruction with TV₂, $\alpha = 0$, $\beta = 10$, MAE = 3.66 × 10⁻².

Bernoulli's Lemniscate on the sphere \mathbb{S}^2

$$\gamma(t) := \frac{a\sqrt{2}}{\sin^2(t) + 1} (\cos(t), \cos(t)\sin(t), 1)^{\mathrm{T}}, \quad t \in [0, 2\pi], a = \frac{\pi}{2\sqrt{2}}.$$

Generate a sphere-valued signal by

reconstruction with TV₁ & TV₂, $\alpha = 0.16$, $\beta = 12.4$, MAE = 3.27×10^{-2} .

15

Draw symmetric positive definite 3×3 matrices as ellipsoids

original data

Draw symmetric positive definite 3×3 matrices as ellipsoids

lost (a lot of) data

original data

Draw symmetric positive definite 3×3 matrices as ellipsoids

original data

inpainted with $\alpha = \beta = 0.05$, MAE = 0.0929

Draw symmetric positive definite 3×3 matrices as ellipsoids

original data

inpainted with $\alpha =$ 0.1, MAE = 0.0712

The cyclic proximal point algorithm is

- highly parallelizable
- \cdot very flexible
- known to converge (arbitrarily) slow

Improvements for first order TV

- parallel Douglas-Rachford algorithm: [RB, Persch, Steidl, 2016] only on Hadamard manifolds, faster convergence observed
- half-quadratic minimization: [RB, Chan, Hielscher, Persch, Steidl, 2016] relaxation and gradient descent or quasi-Newton.

Properties and Improvements II

Instead of addition: infimal convolution, let $\beta \in [0, 1]$ be given and

$$\mathcal{R}(u) = \inf_{u=v+w} \beta \mathrm{TV}(v) + (1-\beta) \mathrm{TV}_2(w)$$

or similarly total generalized variation (TGV).

The question is again

What is "+" on a manifold?

[RB,Fitschen,Persch,Steid, 2018; Bredies, Holler, Storath, Weinmann, 2018]

Or to phrase the question a little more formal

What are the core properties of the regulariser to keep?

Properties and Improvements II

Instead of addition: infimal convolution, let $\beta \in [0, 1]$ be given and

$$\mathcal{R}(u) = \inf_{w} \beta \mathrm{TV}(u - w) + (1 - \beta) \mathrm{TV}_{2}(w)$$

or similarly total generalized variation (TGV).

The question is again

What is "-" on a manifold?

[RB,Fitschen,Persch,Steid, 2018; Bredies, Holler, Storath, Weinmann, 2018]

Or to phrase the question a little more formal

What are the core properties of the regulariser to keep?

The Graph *p*-Laplacian

Finite Weighted Graphs for Image Processing

A pixel might have a...

Local neighborhood

Finite Weighted Graphs for Image Processing

A pixel might have a...

Local neighborhood

Nonlocal neighborhood

Finite Weighted Graphs for Image Processing

Polygon mesh approximation of a 3D surface. Image courtesy: Gabriel Peyré

"...Everything can be modeled as a graph"

The Graph Framework I

Let G = (V, E, w) be a weighted (directed) graph, i.e.,

- $\cdot V$ a finite set of nodes
- $\cdot E \subset V \times V$ a finite set of edges $(u, v) \in E$ short: $v \sim u$
- $w: V \times V \to \mathbb{R}^+$ a weight function with: $w(u,v) > 0 \Leftrightarrow (u,v) \in E$

The Graph Framework II

Aim: Notion of a finite difference for data of arbitrary topology

[Almoataz, Lézoray, Bougleux, 2008]

$$\nabla f(u,v) = \sqrt{w(u,v)} \left(f(v) - f(u) \right)$$

Special case: Finite differences

Let G = (V, E, w) be a directed 2-neighbour grid graph with the weight function w chosen as:

$$w(u,v) = \begin{cases} \frac{1}{h^2} \ , \ \text{if} \ u \sim v \\ 0 \ , \ \text{else} \end{cases}$$

Translating Higher Order Differential Operators

Idea: Mimic important PDEs from image processing on finite weighted graphs, e.g., the *p*-Laplacian equation

[Elmoataz, Toutain, Tenbrinck, 2015]

Idea: Mimic important PDEs from image processing on finite weighted graphs, e.g., the *p*-Laplacian equation

[Elmoataz, Toutain, Tenbrinck, 2015]

Let $\Omega \subset \mathbb{R}^n$ an open, bounded set, let $1 \le p < \infty$ and $f: \Omega \to \mathbb{R}^m$. We are interested in a solution of the homogeneous p-Laplace equation

$$\Delta_p f(x) = -\operatorname{div}\left(\left\|\frac{\partial f}{\partial x_i}\right\|^{p-2} \frac{\partial f}{\partial x_i}\right)(x)$$
$$= -\sum_{i=1}^n \left(\frac{\partial}{\partial x_i}\left\|\frac{\partial f}{\partial x_i}\right\|^{p-2} \frac{\partial f}{\partial x_i}\right)(x) = 0$$

Idea: Mimic important PDEs from image processing on finite weighted graphs, e.g., the *p*-Laplacian equation

[Elmoataz, Toutain, Tenbrinck, 2015]

Let G(V, E, w) a finite weighted graph, let $1 \le p < \infty$ and $f: V \to \mathbb{R}^m$ a vertex function. We are interested in a solution of the following finite difference equation:

$$\Delta_{w,p} f(u) = \frac{1}{2} \operatorname{div} \left(\|\nabla f\|^{p-2} \nabla f \right) (u)$$

= $-\sum_{v \sim u} (w(u,v))^{p/2} \|f(v) - f(u)\|^{p-2} (f(v) - f(u)) = 0$

Idea: Mimic important PDEs from image processing on finite weighted graphs, e.g., the *p*-Laplacian equation

[Elmoataz, Toutain, Tenbrinck, 2015]

Let G(V, E, w) a finite weighted graph, let $1 \le p < \infty$ and $f: V \to \mathbb{R}^m$ a vertex function. We are interested in a solution of the following finite difference equation:

$$\Delta_{w,p} f(u) = \frac{1}{2} \operatorname{div} \left(\|\nabla f\|^{p-2} \nabla f \right) (u)$$

= $-\sum_{v \sim u} (w(u,v))^{p/2} \|f(v) - f(u)\|^{p-2} (f(v) - f(u)) = 0$

Can we do the same for manifold-valued vertex functions $f: V \to \mathcal{M}$?

$$\frac{\mathsf{On}\;\mathbb{R}^n}{\mathcal{H}(V;\mathbb{R}^m)} = \left\{f\colon V\to\mathbb{R}^m\right\}$$

Space of edge functions $\begin{aligned} \mathcal{H}(E;\mathbb{R}^m) &= \left\{ H\colon E\to\mathbb{R}^m, \\ H(u,v)\in\mathbb{R}^m, (u,v)\in E \right\} \end{aligned}$

Gradient

$$\nabla f(u, v) = \sqrt{w(u, v)} (f(v) - f(u))$$

Local variation

$$\|\nabla f\|_{p,f(u)}^{p} = \sum_{v \sim u} \sqrt{w(u,v)}^{p} \|f(v) - f(u)\|^{p}$$

 $\frac{\mathsf{On}\ \mathbb{R}^n}{\mathcal{H}(V;\mathbb{R}^m)} = \left\{f\colon V\to\mathbb{R}^m\right\}$

Space of edge functions
$$\begin{split} \mathcal{H}(E;\mathbb{R}^m) &= \left\{ H\colon E \to \mathbb{R}^m, \\ H(u,v) \in \mathbb{R}^m, (u,v) \in E \right\} \end{split}$$

Gradient

 $\nabla f(u, v) = \sqrt{w(u, v)} (f(v) - f(u))$

Local variation

$$\|\nabla f\|_{p,f(u)}^{p} = \sum_{v \sim u} \sqrt{w(u,v)}^{p} \|f(v) - f(u)\|^{p}$$

Riemannian Manifold \mathcal{M} $\mathcal{H}(V; \mathcal{M}) \coloneqq \left\{ f \colon V \to \mathcal{M} \right\}$

$$\mathcal{H}(E; T_f \mathcal{M}) = \left\{ H_f \colon E \to \mathcal{T}\mathcal{M}, \\ H_f(u, v) \to \mathcal{T}_{f(u)} \mathcal{M}, (u, v) \in E \right\}$$

 $\frac{\mathsf{On}\ \mathbb{R}^n}{\mathcal{H}(V;\mathbb{R}^m)} = \left\{f\colon V\to\mathbb{R}^m\right\}$

Space of edge functions
$$\begin{split} \mathcal{H}(E;\mathbb{R}^m) &= \left\{ H\colon E \to \mathbb{R}^m, \\ H(u,v) \in \mathbb{R}^m, (u,v) \in E \right\} \end{split}$$

Gradient

 $\nabla f(u, v) = \sqrt{w(u, v)} (f(v) - f(u))$

Local variation

$$\|\nabla f\|_{p,f(u)}^{p} = \sum_{v \sim u} \sqrt{w(u,v)}^{p} \|f(v) - f(u)\|^{p}$$

Riemannian Manifold \mathcal{M} $\mathcal{H}(V; \mathcal{M}) \coloneqq \left\{ f \colon V \to \mathcal{M} \right\}$

$$\mathcal{H}(E; T_f \mathcal{M}) = \left\{ H_f \colon E \to \mathcal{T} \mathcal{M}, \\ H_f(u, v) \to \mathcal{T}_{f(u)} \mathcal{M}, (u, v) \in E \right\}$$

$$\nabla f(u, v) \\ \coloneqq \sqrt{w(u, v)} \log_{f(u)} f(v) \\ \in T_{f(u)} \mathcal{M}$$

7

 $\frac{\mathsf{On}\ \mathbb{R}^n}{\mathcal{H}(V;\mathbb{R}^m)} = \left\{f\colon V\to\mathbb{R}^m\right\}$

Space of edge functions
$$\begin{split} \mathcal{H}(E;\mathbb{R}^m) &= \left\{ H\colon E \to \mathbb{R}^m, \\ H(u,v) \in \mathbb{R}^m, (u,v) \in E \right\} \end{split}$$

Gradient

 $\nabla f(u, v) = \sqrt{w(u, v)} (f(v) - f(u))$

Local variation

$$\|\nabla f\|_{p,f(u)}^{p} = \sum_{v \sim u} \sqrt{w(u,v)}^{p} \|f(v) - f(u)\|^{p}$$

Riemannian Manifold \mathcal{M} $\mathcal{H}(V; \mathcal{M}) \coloneqq \left\{ f \colon V \to \mathcal{M} \right\}$

$$\mathcal{H}(E; T_f \mathcal{M}) = \left\{ H_f \colon E \to \mathcal{T}\mathcal{M}, \\ H_f(u, v) \to \mathcal{T}_{f(u)} \mathcal{M}, (u, v) \in E \right\}$$

$$\nabla f(u, v) \\ \coloneqq \sqrt{w(u, v)} \log_{f(u)} f(v) \\ \in T_{f(u)} \mathcal{M}$$

$$\begin{aligned} \|\nabla f\|_{p,f(u)}^p & \coloneqq \sum_{v \sim u} \sqrt{w(u,v)}^p d_{\mathcal{M}}(f(u),f(v))^p \end{aligned}$$

What is $\langle \nabla f, H \rangle = \langle f, \nabla^* H \rangle$, $\nabla^* = -$ div, on a manifold?

(Local) Divergence

Theorem [RB, Tenbrinck, 2018] For $f \in \mathcal{H}(V; \mathcal{M})$, $H_f \in \mathcal{H}(E; T_f \mathcal{M})$, we have

$$\langle \nabla f, H_f \rangle_{\mathcal{H}(E; \mathcal{T}_f \mathcal{M})} = \sum_{u \in V} \sum_{v \sim u} \langle \log_{f(u)} f(v), -\operatorname{div} H_f(u) \rangle_{f(u)},$$

where the local divergence is given by

div
$$H_f(u)$$

$$\coloneqq \frac{1}{2} \sum_{v \sim u} \sqrt{w(v, u)} \operatorname{PT}_{f(v) \to f(u)} H_f(v, u) - \sqrt{w(u, v)} H_f(u, v)$$

(Local) Divergence

Theorem [RB, Tenbrinck, 2018] For $f \in \mathcal{H}(V; \mathcal{M})$, $H_f \in \mathcal{H}(E; T_f \mathcal{M})$, we have

$$\langle \nabla f, H_f \rangle_{\mathcal{H}(E; \mathcal{T}_f \mathcal{M})} = \sum_{u \in V} \sum_{v \sim u} \langle \log_{f(u)} f(v), -\operatorname{div} H_f(u) \rangle_{f(u)},$$

where the local divergence is given by

div
$$H_f(u)$$

$$\coloneqq \frac{1}{2} \sum_{v \sim u} \sqrt{w(v, u)} \operatorname{PT}_{f(v) \to f(u)} H_f(v, u) - \sqrt{w(u, v)} H_f(u, v)$$

Remark

By antisymmetry $\nabla f(u, v) = -\operatorname{PT}_{f(v) \to f(u)} \nabla f(v, u) \in \operatorname{T}_{f(u)} \mathcal{M}$ we get

$$\operatorname{div}(\nabla f)(u) = -\sum_{v \sim u} w(u, v) \log_{f(u)} f(v)$$

The Manifold-valued Graph *p*-Laplacians

We define the Graph *p*-Laplacians:

• anisotropic $\Delta_p^{\mathrm{a}} \colon \mathcal{H}(V; \mathcal{M}) \to \mathcal{H}(V; T\mathcal{M})$ by

$$\begin{aligned} \Delta_p^{\mathbf{a}} f(u) &:= \operatorname{div} \left(\|\nabla f\|_{f(\cdot)}^{p-2} \nabla f \right)(u) \\ &= -\sum_{v \sim u} \sqrt{w(u,v)}^p d_{\mathcal{M}}^{p-2}(f(u),f(v)) \log_{f(u)} f(v) \end{aligned}$$

• isotropic $\Delta_p^i \colon \mathcal{H}(V; \mathcal{M}) \to \mathcal{H}(V; T\mathcal{M})$ by $\Delta_p^i f(u) \coloneqq \operatorname{div} \left(\|\nabla f\|_{2, f(\cdot)}^{p-2} \nabla f \right)(u)$ $= -b_i(u) \sum_{v \sim u} w(u, v) \log_{f(u)} f(v) ,$

where

$$b_{i}(u) \coloneqq \|\nabla f\|_{2,f(u)}^{p-2} = \left(\sum_{v \sim u} w(u,v) d_{\mathcal{M}}^{2}(f(u),f(v))\right)^{\frac{p-2}{2}}$$

Goal: A Minimizer of a variational model $\mathcal{E} : \mathcal{H}(V; \mathcal{M}) \to \mathbb{R}$ the anisotropic energy functional

[Lellmann, Strekalovskiy, Kötters, Cremers, '13; Weinmann, Demaret, Storath, '14; RB, Persch, Steidl, '16]

$$\mathcal{E}_{\mathbf{a}}(f) := \frac{\lambda}{2} \sum_{u \in V} d_{\mathcal{M}}^2(f_0(u), f(u)) + \frac{1}{p} \sum_{(u,v) \in E} \|\nabla f(u,v)\|_{f(u)}^p,$$

and the isotropic energy functional

[RB, Chan, Hielscher, Persch, Steidl, '16; RB, Fitschen, Persch, Steidl, '18]

$$\mathcal{E}_{i}(f) := \frac{\lambda}{2} \sum_{u \in V} d_{\mathcal{M}}^{2}(f_{0}(u), f(u)) + \frac{1}{p} \sum_{u \in V} \left(\sum_{v \sim u} \|\nabla f(u, v)\|_{f(u)}^{2} \right)^{p/2}$$

Optimality Conditions

For $e \in \{a, i\}$ and any $u \in V$ we have for a minimizer $0 \stackrel{!}{=} \Delta_p^e f(u) - \lambda \log_{f(u)} f_0(u) \in T_{f(u)}\mathcal{M}.$

Optimality Conditions

For $e \in \{a, i\}$ and any $u \in V$ we have for a minimizer $0 \stackrel{!}{=} \Delta_p^e f(u) - \lambda \log_{f(u)} f_0(u) \in T_{f(u)} \mathcal{M}.$

Algorithm I. Forward difference or explicit scheme:

$$f_{n+1}(u) = \exp_{f_n(u)} \left(\Delta t \left(\Delta_p^{\mathrm{e}} f_n(u) - \lambda \log_{f_n(u)} f_0(u) \right) \right)$$

! to meet CFL conditions: small Δt necessary
Optimality Conditions

For $e \in \{a, i\}$ and any $u \in V$ we have for a minimizer $0 \stackrel{!}{=} \Delta_p^e f(u) - \lambda \log_{f(u)} f_0(u) \in \mathcal{T}_{f(u)}\mathcal{M}.$

Algorithm I. Forward difference or explicit scheme:

$$f_{n+1}(u) = \exp_{f_n(u)} \left(\Delta t \left(\Delta_p^{\mathrm{e}} f_n(u) - \lambda \log_{f_n(u)} f_0(u) \right) \right)$$

! to meet CFL conditions: small Δt necessary Algorithm II. Jacobi iteration

$$f_{n+1}(u) = \exp_{f_n(u)} \left(\frac{\sum_{v \sim u} b(u, v) \log_{f_n(u)} f_n(v) + \lambda \log_{f_n(u)} f_0(u)}{\lambda + \sum_{v \sim u} b(u, v)} \right),$$
$$b(u, v) = \begin{cases} \sqrt{w(u, v)}^p d_{\mathcal{M}}^{p-2}(f(u), f(v)), & e = a, \\ b_i(u), & e = i. \end{cases}$$

- $\cdot \mathcal{M} = \mathbb{S}^2$
- $V = \{1, \dots, 64\} \times \{1, \dots, 64\}$ pixel grid
- $\cdot E$ is the 4-neighborhood, Neumann boundary

- $\cdot \mathcal{M} = \mathbb{S}^2$
- $V = \{1, \dots, 64\} \times \{1, \dots, 64\}$ pixel grid
- $\cdot ~ E$ is the 4-neighborhood, Neumann boundary

 $f_{
m 1000}$ $\lambda=$ 0, p= 1, anisotropic $_{
m 28}$

- $\cdot \mathcal{M} = \mathbb{S}^2$
- $V = \{1, \dots, 64\} \times \{1, \dots, 64\}$ pixel grid
- $\cdot \, E$ is the 4-neighborhood, Neumann boundary

 $f_{
m 1000}$ $\lambda=$ 0, p= 1, isotropic

- $\cdot \mathcal{M} = \mathbb{S}^2$
- $V = \{1, \dots, 64\} \times \{1, \dots, 64\}$ pixel grid
- $\cdot \, E$ is the 4-neighborhood, Neumann boundary

 f_{1000} $\lambda = 0, p = 1, p = 2,$ (an)isotropic

Light Detection and Ranging data (LiDaR), 40×40 pixel

original data

[Geesch et al., 2009] via MFOPT lellmann.net/software/mfopt

Light Detection and Ranging data (LiDaR), 40×40 pixel

original data [Geesch et al., 2009] via MFOPT lellmann.net/software/mfopt

A STATE OF A
and the second se
TAXANA AND AND A STORE
A CONTRACT OF A

many second s
And the second se
and a state of the
Canada and a state of the second of the second seco
A COMPANY OF THE OWNER OWNER OF THE OWNER OF THE OWNER OW
and a second s
and the second sec
Contraction of the second second second
and the second sec
and a summer of the second s
A second of the second second second
and the second
and the second
a supervised and a supervised of the supervised
And and a state of the state of
and the second of the second o
1 and the second
and the second s
APPEnness and a support of the APPENNESS STREET, STREE
A A A A A A A A A A A A A A A A A A A
and the second state of th
a second property of the second state of the s
A second property of the second
and a second of the second of
and the second of a second sec
and an and a second sec
and a second of the second of
and a strange of the second states and state
and and the second of the second states of the seco

p= 2, $\lambda=$ 0.5, (an)isotropic.

Light Detection and Ranging data (LiDaR), 40×40 pixel

 $p = 1, \lambda = 2,$ anisotropic.

Light Detection and Ranging data (LiDaR), 40×40 pixel

original data [Geesch et al., 2009] via MFOPT lellmann.net/software/mfopt

 $p = 1, \lambda = 2,$ anisotropic.

 $p = 0.1, \lambda = 1,$ anisotropic.

- $\cdot \mathcal{M} = \mathbb{S}^1$, phase in $[-\pi,\pi)$, color: hue
- $V = \{1, \dots, 256\} \times \{1, \dots, 256\}$ pixel grid
- + E from 12 most similar pixels w.r.t. 17 \times 17 patch distances

original.

- $\cdot \mathcal{M} = \mathbb{S}^1$, phase in $[-\pi,\pi)$, color: hue
- $V = \{1, \dots, 256\} \times \{1, \dots, 256\}$ pixel grid
- + E from 12 most similar pixels w.r.t. 17 \times 17 patch distances

wrapped Gaussian, $\sigma = 0.3$.

- $\cdot \ \mathcal{M} = \mathbb{S}^1$, phase in $[-\pi,\pi)$, color: hue
- $V = \{1, \dots, 256\} \times \{1, \dots, 256\}$ pixel grid
- + E from 12 most similar pixels w.r.t. 17 \times 17 patch distances

wrapped Gaussian, $\sigma = 0.3$.

NL-MMSE. [Laus et al., 2017] $\varepsilon = 2.50 \times 10^{-3}$

- $\cdot \ \mathcal{M} = \mathbb{S}^1$, phase in $[-\pi,\pi)$, color: hue
- $V = \{1, \dots, 256\} \times \{1, \dots, 256\}$ pixel grid
- + E from 12 most similar pixels w.r.t. 17 \times 17 patch distances

original.

anisotropic, p= 1, $\lambda=2^{-8}$, $\varepsilon=2.67 imes10^{-3}.$

Local denoising on a surface

- $\boldsymbol{\cdot} \ \mathcal{M} = \mathcal{P}(3)$
- $V = \text{point cloud: boundary of Camino dataset}^1$
- \cdot local Neighborhood, $d_{\max}=2$

Original Data

¹Data available from The Camino Project, cmic.cs.ucl.ac.uk/camino

Local denoising on a surface

- $\boldsymbol{\cdot} \ \mathcal{M} = \mathcal{P}(3)$
- $V = \text{point cloud: boundary of Camino dataset}^1$
- \cdot local Neighborhood, $d_{\max}=2$

$\lambda =$ 50, anisotropic 1-Laplace.

¹Data available from The Camino Project, cmic.cs.ucl.ac.uk/camino

Summary

We have for manifold valued images $f \colon \mathcal{V} \to \mathcal{M}$

- a model for a first and second order TV-type functional $\mathcal{E}(u)$
- cyclic proximal point algorithm to minimize $\mathcal{E}(u)$
- proof of convergence
- Code available:

ronnybergmann.net/mvirt/

Furthermore manifold valued vertex functions $f: V \to \mathcal{M}$

- \cdot includes nonlocal methods and data on surfaces
- manifold valued graph *p*-Laplacian
- Code available soon.

Future work

- different couplings (infimal convolution)
- other algorithms
- different settings, e.g. constraint optimization
- applications to e.g.
 - DT-MRI
 - phase valued data
 - EBSD data
 - other manifolds?
- other image processing tasks
- continuous models

...and an implementation in Julia (work in progress).

References

R. Bergmann and D. Tenbrinck. "A graph framework for manifold-valued data". In: *SIAM Journal on Imaging Sciences* 11 (1 2018), pp. 325–360. arXiv: 1702.05293.

- M. Bačák, R. Bergmann, G. Steidl, and A. Weinmann. "A second order non-smooth variational model for restoring manifold-valued images". In: *SIAM Journal on Scientific Computing* 38.1 (2016), A567–A597. arXiv: 1506.02409.
- R. Bergmann, J. Persch, and G. Steidl. "A parallel Douglas–Rachford algorithm for minimizing ROF-like functionals on images with values in symmetric Hadamard manifolds". In: *SIAM Journal on Imaging Sciences* 9.3 (2016), pp. 901–937. arXiv: 1512.02814.

R. Bergmann, J. H. Fitschen, J. Persch, and G. Steidl. "Priors with coupled first and second order differences for manifold-valued image processing". In: *Journal of Mathematical Imaging and Vision* (2018). accepted, online first. arXiv: 1709.01343.

Thank you for your attention.

R. Bergmann and D. Tenbrinck. "A graph framework for manifold-valued data". In: SIAM Journal on Imaging Sciences 11 (1 2018), pp. 325–360. arXiv: 1702.05293.

- M. Bačák, R. Bergmann, G. Steidl, and A. Weinmann. "A second order non-smooth variational model for restoring manifold-valued images". In: *SIAM Journal on Scientific Computing* 38.1 (2016), A567–A597. arXiv: 1506.02409.
- R. Bergmann, J. Persch, and G. Steidl. "A parallel Douglas–Rachford algorithm for minimizing ROF-like functionals on images with values in symmetric Hadamard manifolds". In: *SIAM Journal on Imaging Sciences* 9.3 (2016), pp. 901–937. arXiv: 1512.02814.

R. Bergmann, J. H. Fitschen, J. Persch, and G. Steidl. "Priors with coupled first and second order differences for manifold-valued image processing". In: *Journal of Mathematical Imaging and Vision* (2018). accepted, online first. arXiv: 1709.01343.