A Variational Model for Data Fitting on Manifolds by Minimizing the Acceleration of a Bézier Curve

Ronny Bergmann^a, Pierre-Yves Gousenbourger^b

^aTechnische Universität Chemnitz, Chemnitz, Germany

^bUniversité catholique de Louvain, Louvain-la-Neuve, Belgium

Section MA-15:

Optimization and Equilibrium Problems on Riemannian Manifolds 30th European Conference on Operational Research, Dublin, Ireland.

June 23, 2019.

Data Fitting on Manifolds

Given data points d_0, \ldots, d_n on a Riemannian manifold \mathcal{M} and time points $t_i \in I$, find a "nice" curve $\gamma \colon I \to \mathcal{M}, \gamma \in \Gamma$, such that $\gamma(t_i) = d_i$ (interpolation) or $\gamma(t_i) \approx d_i$ (approximation).

1

Data Fitting on Manifolds

Given data points d_0, \ldots, d_n on a Riemannian manifold \mathcal{M} and time points $t_i \in I$, find a "nice" curve $\gamma \colon I \to \mathcal{M}$, $\gamma \in \Gamma$, such that $\gamma(t_i) = d_i$ (interpolation) or $\gamma(t_i) \approx d_i$ (approximation).

- Γ set of geodesics & approximation: geodesic regression [Rentmeesters, 2011; Fletcher, 2013; Boumal, Absil, 2011]
- Γ Sobolev space of curves: Inifinite-dimensional problem [Samir et al., 2012]
- Γ composite Bézier curves; LSs in tangent spaces
 [Arnould et al., 2015; Gousenbourger, Massart, Absil, 2018]
- Discretized curve, $\Gamma=\mathcal{M}^N$, [Boumal, Absil, 2011]

Data Fitting on Manifolds

Given data points d_0, \ldots, d_n on a Riemannian manifold \mathcal{M} and time points $t_i \in I$, find a "nice" curve $\gamma \colon I \to \mathcal{M}, \, \gamma \in \Gamma$, such that $\gamma(t_i) = d_i$ (interpolation) or $\gamma(t_i) \approx d_i$ (approximation).

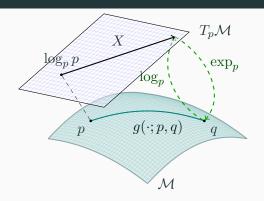
- Γ set of geodesics & approximation: geodesic regression [Rentmeesters, 2011; Fletcher, 2013; Boumal, Absil, 2011]
- Γ Sobolev space of curves: Inifinite-dimensional problem [Samir et al., 2012]
- Γ composite Bézier curves; LSs in tangent spaces
 [Arnould et al., 2015; Gousenbourger, Massart, Absil, 2018]
- Discretized curve, $\Gamma=\mathcal{M}^N$, [Boumal, Absil, 2011]

This talk.

"nice" means minimal (discretized) acceleration ("as straight as possible") for Γ the set of composite Bézier curves.

Closed form solution for $\mathcal{M} = \mathbb{R}^d$: Natural (cubic) splines.

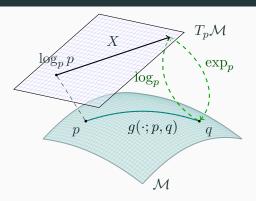
A d-dimensional Riemannian Manifold ${\mathcal M}$



A d-dimensional Riemannian manifold can be informally defined as a set $\mathcal M$ covered with a 'suitable' collection of charts, that identify subsets of $\mathcal M$ with open subsets of $\mathbb R^d$ and a continuously varying inner product on the tangential spaces.

[Absil, Mahony, Sepulchre, 2008]

A d-dimensional Riemannian Manifold ${\mathcal M}$



Geodesic $g(\cdot; p, q)$ shortest path (on \mathcal{M}) between $p, q \in \mathcal{M}$ Tangent space $\mathrm{T}_p \mathcal{M}$ at p, with inner product $(\cdot, \cdot)_p$ Logarithmic map $\log_p q = \dot{g}(0; p, q)$ "speed towards q" Exponential map $\exp_p X = g(1)$, where g(0) = p, $\dot{g}(0) = X$

Variational Methods on Manifolds

Variational methods model a trade-off between staying close to the data and minimizing a certain property

$$\mathcal{E}(p) = D(p; f) + \alpha R(p), \quad p \in \mathcal{M}$$

- $\alpha > 0$ is a weight
- M is a Riemannian manifold
- given (input) data $f \in \mathcal{M}$
- data or similarity term D(p; f)
- regularizer / prior R(p)
- \mathcal{E} is smooth, but high-dimensional, $\mathcal{M} = \mathcal{N}^m$, $m \in \mathbb{N}$

(Euclidean) Bézier Curves

Definition

[Bézier, 1962]

A Bézier curve β_K of degree $K \in \mathbb{N}_0$ is a function $\beta_K \colon [0,1] \to \mathbb{R}^d$ parametrized by control points $b_0, \ldots, b_K \in \mathbb{R}^d$ and defined by

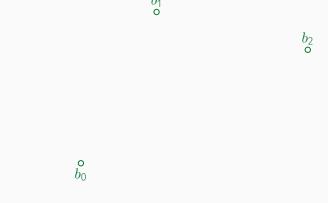
$$\beta_K(t; b_0, \dots, b_K) := \sum_{j=0}^K b_j B_{j,K}(t),$$

[Bernstein, 1912]

where $B_{j,K} = {K \choose j} t^j (1-t)^{K-j}$ are the Bernstein polynomials of degree K.

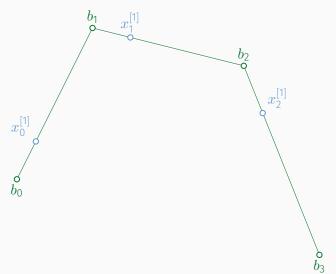
Evaluation via Casteljau's algorithm.

[de Casteljau, 1959]

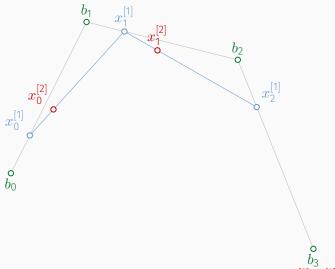


 b_3

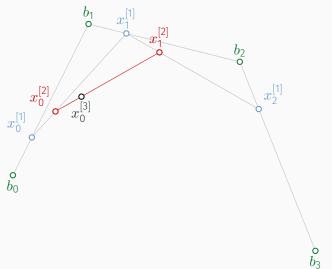
The set of control points b_0, b_1, b_2, b_3 .



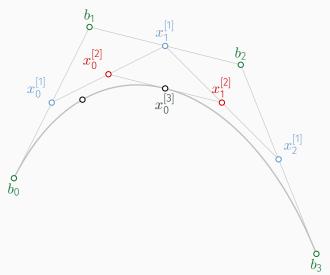
Evaluate line segments at $t=\frac{1}{4}$, obtain $x_0^{[1]},x_1^{[1]},x_2^{[1]}$.



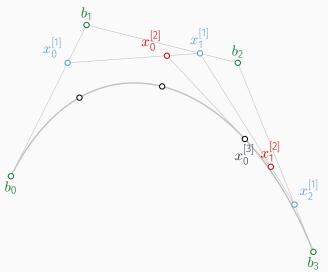
Repeat evaluation for new line segments to obtain $x_0^{[2]}, x_1^{[2]}$.



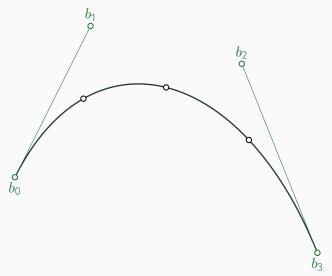
Repeat for the last segment to obtain $\beta_3(\frac{1}{4};b_0,b_1,b_2,b_3)=x_0^{[3]}$.



Same procedure for evaluation of $\beta_3(\frac{1}{2}; b_0, b_1, b_2, b_3)$.



Same procedure for evaluation of $\beta_3(\frac{3}{4};b_0,b_1,b_2,b_3)$.



Complete curve $\beta_3(t; b_0, b_1, b_2, b_3)$.

Composite Bézier Curves

Definition

A composite Bezier curve $B : [0, n] \to \mathbb{R}^d$ is defined as

$$B(t) := \begin{cases} \beta_K(t; b_0^0, \dots, b_K^0) & \text{if } t \in [0, 1], \\ \beta_K(t - i; b_0^i, \dots, b_K^i), & \text{if } t \in (i, i + 1], \quad i = 1, \dots, n - 1. \end{cases}$$

6

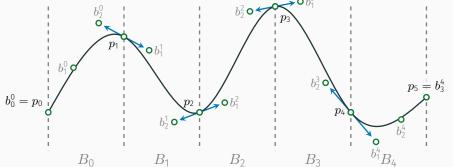
Composite Bézier Curves

Definition

A composite Bezier curve $B \colon [0,n] \to \mathbb{R}^d$ is defined as

$$B(t) := \begin{cases} \beta_K(t; b_0^0, \dots, b_K^0) & \text{if } t \in [0, 1], \\ \beta_K(t - i; b_0^i, \dots, b_K^i), & \text{if } t \in (i, i + 1], \quad i = 1, \dots, n - 1. \end{cases}$$

Denote *i*th segment by $B_i(t) = \beta_K(t; b_0^i, \dots, b_K^i)$ and $p_i = b_0^i$.



6

Composite Bézier Curves

Definition

A composite Bezier curve $B : [0, n] \to \mathbb{R}^d$ is defined as

$$B(t) := \begin{cases} \beta_K(t; b_0^0, \dots, b_K^0) & \text{if } t \in [0, 1], \\ \beta_K(t - i; b_0^i, \dots, b_K^i), & \text{if } t \in (i, i + 1], \quad i = 1, \dots, n - 1. \end{cases}$$

Denote *i*th segment by $B_i(t) = \beta_K(t; b_0^i, \dots, b_K^i)$ and $p_i = b_0^i$.

- continuous iff $B_{i-1}(1) = B_i(0), i = 1, ..., n-1$ $\Rightarrow b_K^{i-1} = b_0^i = p_i, i = 1, ..., n-1$
- continuously differentiable iff $p_i = \frac{1}{2}(b_{K-1}^{i-1} + b_1^i)$

Definition.

[Park, Ravani, 1995; Popiel, Noakes, 2007] Let \mathcal{M} be a Riemannian manifold and $b_0, \ldots, b_K \in \mathcal{M}$, $K \in \mathbb{N}$.

The (generalized) Bézier curve of degree k, k < K, is defined as

$$\beta_k(t;b_0,\ldots,b_k)=g(t;\beta_{k-1}(t;b_0,\ldots,b_{k-1}),\beta_{k-1}(t;b_1,\ldots,b_k)),$$

if k > 0, and

$$\beta_0(t;b_0)=b_0.$$

Definition.

[Park, Ravani, 1995; Popiel, Noakes, 2007] Let \mathcal{M} be a Riemannian manifold and $b_0, \ldots, b_K \in \mathcal{M}, K \in \mathbb{N}$.

The (generalized) Bézier curve of degree k, k < K, is defined as

$$\beta_k(t; b_0, \dots, b_k) = g(t; \beta_{k-1}(t; b_0, \dots, b_{k-1}), \beta_{k-1}(t; b_1, \dots, b_k)),$$

if k > 0. and

$$\beta_0(t;b_0)=b_0.$$

- Bézier curves $\beta_1(t;b_0,b_1)=g(t;b_0,b_1)$ are geodesics.
- · composite Bézier curves $B: [0, n] \to \mathcal{M}$ completely analogue (using geodesics for line segments)

Definition.

[Park, Ravani, 1995; Popiel, Noakes, 2007] Let \mathcal{M} be a Riemannian manifold and $b_0, \ldots, b_K \in \mathcal{M}, K \in \mathbb{N}$.

The (generalized) Bézier curve of degree $k, k \leq K$, is defined as

$$\beta_k(t; b_0, \dots, b_k) = g(t; \beta_{k-1}(t; b_0, \dots, b_{k-1}), \beta_{k-1}(t; b_1, \dots, b_k)),$$

if k > 0, and

$$\beta_0(t;b_0)=b_0.$$

The Riemannian composite Bezier curve B(t) is

- continuous iff $B_{i-1}(1) = B_i(0), i = 1, ..., n-1$ $\Rightarrow b_{K}^{i-1} = b_{0}^{i} =: p_{i}, i = 1, ..., n-1$
- continuously differentiable iff $p_i = g(\frac{1}{2}; b_{K-1}^{i-1}, b_1^i)$

Definition.

[Park, Ravani, 1995; Popiel, Noakes, 2007] Let \mathcal{M} be a Riemannian manifold and $b_0, \ldots, b_K \in \mathcal{M}, K \in \mathbb{N}$.

The (generalized) Bézier curve of degree $k, k \leq K$, is defined as

$$\beta_k(t; b_0, \dots, b_k) = g(t; \beta_{k-1}(t; b_0, \dots, b_{k-1}), \beta_{k-1}(t; b_1, \dots, b_k)),$$

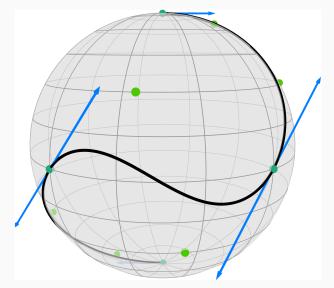
if k > 0, and

$$\beta_0(t;b_0)=b_0.$$

The Riemannian composite Bezier curve B(t) is

- continuous iff $B_{i-1}(1) = B_i(0), i = 1, ..., n-1$ $\Rightarrow b_{K}^{i-1} = b_{0}^{i} =: p_{i}, i = 1, ..., n-1$
- continuously differentiable iff $b_{K-1}^{i-1} = g(2; b_1^i, p_i)$.

Illustration of a Composite Bézier Curve on the Sphere \mathbb{S}^2



The directions, e.g. $\log_{p_j} b_j^1$, are now tangent vectors.

A Variational Model for Data Fitting

Let $d_0, \ldots, d_n \in \mathcal{M}$. A model for data fitting reads

$$\mathcal{E}(B) = \frac{\lambda}{2} \sum_{k=0}^{n} d_{\mathcal{M}}^{2}(B(k), d_{k}) + \int_{0}^{n} \left\| \frac{D^{2}B(t)}{dt^{2}} \right\|_{B(t)}^{2} dt, \qquad \lambda > 0,$$

where $B \in \Gamma$ is from the set of continuously differentiable composite Bezier curve of degree K with n segments.

A Variational Model for Data Fitting

Let $d_0, \ldots, d_n \in \mathcal{M}$. A model for data fitting reads

$$\mathcal{E}(B) = \frac{\lambda}{2} \sum_{k=0}^{n} d_{\mathcal{M}}^{2}(B(k), d_{k}) + \int_{0}^{n} \left\| \frac{D^{2}B(t)}{dt^{2}} \right\|_{B(t)}^{2} dt, \qquad \lambda > 0,$$

where $B \in \Gamma$ is from the set of continuously differentiable composite Bezier curve of degree K with n segments.

- Goal: find minimizer $B^* \in \Gamma$
- finite dimensional optimization problem in the control points b_i^i , i.e. on \mathcal{M}^L with
 - · L = n(K 1) + 2
 - $\lambda \to \infty$ yields interpolation $(p_k = d_k) \Rightarrow L = n(K 2) + 1$

Interlude: Second Order Differences on Manifolds

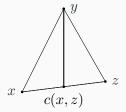
Second order difference:

[RB et al., 2014; RB, Weinmann, 2016; Bačák et al., 2016]

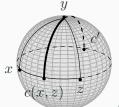
$$d_2(x, y, z) := \min_{c \in \mathcal{C}_{x, z}} d_{\mathcal{M}}(c, y), \quad x, y, z \in \mathcal{M},$$

 $\mathcal{C}_{x,z}$ mid point(s) of geodesic(s) $g(\cdot;x,z)$

$$\frac{1}{2}||x - 2y + z||_2 = ||\frac{1}{2}(x+z) - y||_2$$



$$\min_{c \in \mathcal{C}_{x,z}} d_{\mathcal{M}}(c,y)$$



$$\mathcal{M}=\mathbb{S}^2$$

Discretizing the Data Fitting Model

We discretize the absolute second order covariant derivative

$$\int_0^n \left\| \frac{D^2 B(t)}{\mathrm{d}t^2} \right\|_{\gamma(t)}^2 \mathrm{d}t \approx \sum_{k=1}^{N-1} \frac{\Delta_s d_2^2 [B(s_{i-1}), B(s_i), B(s_{i+1})]}{\Delta_s^4}.$$

on equidistant points s_0, \ldots, s_N with step size $\Delta_s = s_1 - s_0$.

Evaluating $\mathcal{E}(B)$ consists of evaluation of geodesics and squared (Riemannian) distances

- $\cdot (N+1)K$ geodesics to evaluate the Bézier segments
- \cdot N geodesics to evaluate the mid points c
- \cdot N squared distances to obtain the second order absolute finite differences squared

Gradient of the Discretized Data Fitting Model

For the gradient of the discretized data fitting model

$$\mathcal{E}(B) = \frac{\lambda}{2} \sum_{k=0}^{n} d_{\mathcal{M}}^{2}(B(k), d_{k}) + \sum_{k=1}^{N-1} \frac{\Delta_{s} d_{2}^{2}[B(s_{i-1}), B(s_{i}), B(s_{i+1})]}{\Delta_{s}^{4}}.$$

we

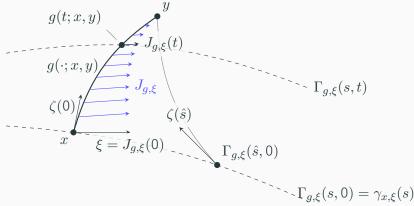
- · identified first and last control points $p_i = b_K^{i-1} = b_0^i$
- plug in the constraint $b_{K-1}^{i-1}=g(\mathbf{2};b_{\mathbf{1}}^{i},p_{i})$
 - ⇒ Introduces a further chain rule for the differential
 - \Rightarrow reduces the number of optimization variables.
- concatenation of adjoint Jacobi fields (evaluated at the points s_i) yields the gradient $\nabla_{\mathcal{N}} \mathcal{E}$.

The Differential of a Geodesic w.r.t. its Start Point

The geodesic variation

$$\Gamma_{g,\xi}(s,t) := \exp_{\gamma_{x,\xi}(s)}(t\zeta(s)), \qquad s \in (-\varepsilon,\varepsilon), \ t \in [0,1], \varepsilon > 0.$$

is used to define the Jacobi field $J_{g,\xi}(t)=\frac{\partial}{\partial s}\Gamma_{g,\xi}(s,t)|_{s=0}.$



Then the differential reads $D_x g(t; \cdot, y)[\xi] = J_{g,\xi}(t)$.

Implementing Jacobi Fields

- On symmetric manifolds, the Jacobi field can be evaluated in closed form, since the PDE decouples into ODEs.
- The adjoint Jacobi fields $J_{g,\eta}^*(t)$ are characterized by

$$\langle J_{g,\xi}(t), \eta \rangle_{g(t)} = \langle \xi, J_{g,\eta}^*(t) \rangle_x, \quad \text{for all } \xi \in T_x \mathcal{M}, \eta \in T_{g(t;x,y)} \mathcal{M}$$

can be computed without extra efforts, i.e. the same ODEs occur.

- \Rightarrow adjoint Jacobi fields can be used to calculate the gradient
 - Gradient of iterated evaluations of geodesics can be computed by composition of (adjoint) Jacobi fields

Gradient Descent on a Manifold

Let $\mathcal{N} = \mathcal{M}^L$ be the product manifold of \mathcal{M} ,

Input.

- $\cdot \ \mathcal{E} : \mathcal{N} \to \mathbb{R}$,
- · its gradient $\nabla_{\mathcal{N}} \mathcal{E}$,
- · initial data $q^{(0)} = b \in \mathcal{N}$
- step sizes $s_k > 0, k \in \mathbb{N}$.

Output: $\hat{q} \in \mathcal{N}$

$$k \leftarrow 0$$

repeat

$$q^{(k+1)} \leftarrow \exp_{q^{(k)}} \left(-s_k \nabla_{\mathcal{N}} \mathcal{E}(q^{(k)}) \right)$$

 $k \leftarrow k+1$

until a stopping criterion is reached

return
$$\hat{q} := q^{(k)}$$

Armijo Step Size Rule

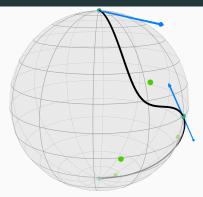
Let $q=q^{(k)}$ be an iterate from the gradient descent algorithm, $\beta, \sigma \in (0,1), \alpha>0$.

Let m be the smallest positive integer such that

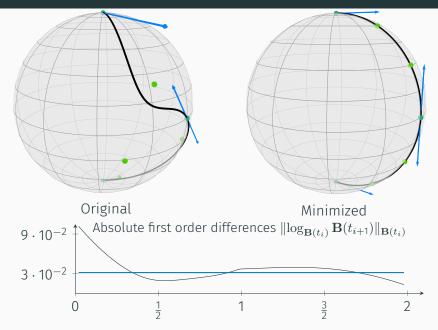
$$\mathcal{E}(q) - \mathcal{E}\left(\exp_q(-\beta^m \alpha \nabla_{\mathcal{N}} \mathcal{E}(q))\right) \ge \sigma \beta^m \alpha \|\nabla_{\mathcal{N}} \mathcal{E}(q)\|_q$$

holds. Set the step size $s_k := \beta^m \alpha$.

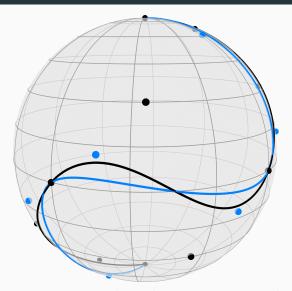
Minimizing with Known Minimizer



Minimizing with Known Minimizer



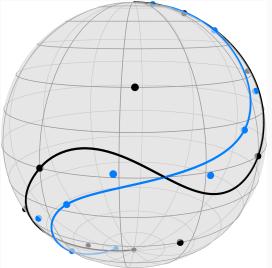
Interpolation by Bézier Curves with Minimal Acceleration.



A comp. Bezier curve (black) and its mnimizer (blue).

Approximation by Bézier Curves with Minimal Acceleration.

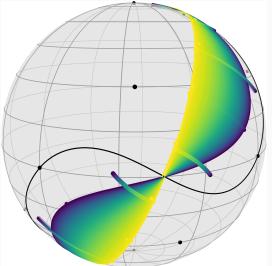
In the following video λ is slowly decreased from 10 to 0.



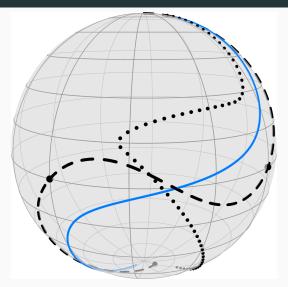
The initial setting, $\lambda = 10$.

Approximation by Bézier Curves with Minimal Acceleration.

In the following video λ is slowly decreased from 10 to 0.



Summary of reducing λ from 10 (violet) to zero (yellow).



This curve (dashed) is "too global" to be solved in a tangent space (dotted) correctly, while our method (blue) still works.

An Example of Rotations $\mathcal{M} = SO(3)$

Initialization with approach from composite splines

Our method outperforms the approach of solving linear systems in tangent spaces, but their approach can serve as an initialization.

Summary

We investigated a model to minimize the acceleration of a Bézier curve

- · using second order differences
- · employing Jacobi fields
- · using a gradient descent w.r.t. the control points

Implement Algorithms in the Julia package

Manopt.jl - see http://manoptjl.org

an manifold optimization toolbox in Julia.

Use an(y) algorithm for a(ny) model directly on a(ny) manifold efficiently in an open source programming language.

Selected References

- Boumal, N.; Absil, P. A. (2011). "A discrete regression method on manifolds and its application to data on SO(n)". IFAC Proceedings Volumes (IFAC-PapersOnline). Vol. 18. PART 1, pp. 2284–2289. DOI: 10.3182/20110828-6-IT-1002.00542.
- Gousenbourger, P.-Y.; Massart, E.; Absil, P.-A. (2018). "Data fitting on manifolds with composite Bézier-like curves and blended cubic splines". *Journal of Mathematical Imaging and Vision*. accepted. DOI: 10.1007/s10851-018-0865-2.
- Samir, C.; Absil, P.-A.; Srivastava, A.; Klassen, E. (2012). "A Gradient-Descent Method for Curve Fitting on Riemannian Manifolds". Foundations of Computational Mathematics 12.1, pp. 49–73. DOI: 10.1007/s10208-011-9091-7.