A Variational Model for Data Fitting on Manifolds by Minimizing the Acceleration of a Bézier Curve

Ronny Bergmann ${ }^{\text {a }}$, Pierre-Yves Gousenbourger ${ }^{\text {b }}$

${ }^{\text {a }}$ Technische Universität Chemnitz, Chemnitz, Germany
${ }^{\text {b }}$ Université catholique de Louvain, Louvain-la-Neuve, Belgium

Section MA-15:
Optimization and Equilibrium Problems on Riemannian Manifolds
30th European Conference on Operational Research,
Dublin, Ireland,
June 23, 2019.

Data Fitting on Manifolds

Given data points d_{0}, \ldots, d_{n} on a Riemannian manifold \mathcal{M} and time points $t_{i} \in I$, find a "nice" curve $\gamma: I \rightarrow \mathcal{M}, \gamma \in \Gamma$, such that $\gamma\left(t_{i}\right)=d_{i}$ (interpolation) or $\gamma\left(t_{i}\right) \approx d_{i}$ (approximation).

Data Fitting on Manifolds

Given data points d_{0}, \ldots, d_{n} on a Riemannian manifold \mathcal{M} and time points $t_{i} \in I$, find a "nice" curve $\gamma: I \rightarrow \mathcal{M}, \gamma \in \Gamma$, such that $\gamma\left(t_{i}\right)=d_{i}$ (interpolation) or $\gamma\left(t_{i}\right) \approx d_{i}$ (approximation).

- Γ set of geodesics \& approximation: geodesic regression
[Rentmeesters, 2011; Fletcher, 2013; Boumal, Absil, 2011]
- Г Sobolev space of curves: Inifinite-dimensional problem
[Samir et al., 2012]
- Γ composite Bézier curves; LSs in tangent spaces
[Arnould et al., 2015; Gousenbourger, Massart, Absil, 2018]
- Discretized curve, $\Gamma=\mathcal{M}^{N}$,

Data Fitting on Manifolds

Given data points d_{0}, \ldots, d_{n} on a Riemannian manifold \mathcal{M} and time points $t_{i} \in I$, find a "nice" curve $\gamma: I \rightarrow \mathcal{M}, \gamma \in \Gamma$, such that $\gamma\left(t_{i}\right)=d_{i}$ (interpolation) or $\gamma\left(t_{i}\right) \approx d_{i}$ (approximation).

- Γ set of geodesics \& approximation: geodesic regression
[Rentmeesters, 2011; Fletcher, 2013; Boumal, Absil, 2011]
- Γ Sobolev space of curves: Inifinite-dimensional problem
[Samir et al., 2012]
- Γ composite Bézier curves; LSs in tangent spaces
[Arnould et al., 2015; Gousenbourger, Massart, Absil, 2018]
- Discretized curve, $\Gamma=\mathcal{M}^{N}$,

This talk.

"nice" means minimal (discretized) acceleration ("as straight as possible") for Γ the set of composite Bézier curves.

Closed form solution for $\mathcal{M}=\mathbb{R}^{d}$: Natural (cubic) splines.

A d-dimensional Riemannian Manifold \mathcal{M}

A d-dimensional Riemannian manifold can be informally defined as a set \mathcal{M} covered with a 'suitable' collection of charts, that identify subsets of \mathcal{M} with open subsets of \mathbb{R}^{d} and a continuously varying inner product on the tangential spaces.
[Absil, Mahony, Sepulchre, 2008]

A d-dimensional Riemannian Manifold \mathcal{M}

Geodesic $g(\cdot ; p, q$) shortest path (on \mathcal{M}) between $p, q \in \mathcal{M}$ Tangent space $\mathrm{T}_{p} \mathcal{M}$ at p, with inner product $(\cdot, \cdot)_{p}$
Logarithmic map $\log _{p} q=\dot{g}(0 ; p, q)$ "speed towards q " Exponential map $\exp _{p} X=g(1)$, where $g(0)=p, \dot{g}(0)=X$

Variational Methods on Manifolds

Variational methods model a trade-off between staying close to the data and minimizing a certain property

$$
\mathcal{E}(p)=D(p ; f)+\alpha R(p), \quad p \in \mathcal{M}
$$

- $\alpha>0$ is a weight
- \mathcal{M} is a Riemannian manifold
- given (input) data $f \in \mathcal{M}$
- data or similarity term $D(p ; f)$
- regularizer / prior $R(p)$
- \mathcal{E} is smooth, but high-dimensional, $\mathcal{M}=\mathcal{N}^{m}, m \in \mathbb{N}$

(Euclidean) Bézier Curves

Definition

A Bézier curve β_{K} of degree $K \in \mathbb{N}_{0}$ is a function
$\beta_{K}:[0,1] \rightarrow \mathbb{R}^{d}$ parametrized by control points $b_{0}, \ldots, b_{K} \in \mathbb{R}^{d}$ and defined by

$$
\beta_{K}\left(t ; b_{0}, \ldots, b_{K}\right):=\sum_{j=0}^{K} b_{j} B_{j, K}(t)
$$

[Berstein, 1912]
where $B_{j, K}=\binom{K}{j} t^{j}(1-t)^{K-j}$ are the Bernstein polynomials of degree K.

Evaluation via Casteljau's algorithm.

Illustration of de Casteljau's Algorithm

b_{1}
0

$$
\begin{gathered}
b_{2} \\
0
\end{gathered}
$$

$\stackrel{\circ}{b_{0}}$

The set of control points $b_{0}, b_{1}, b_{2}, b_{3}$.

Illustration of de Casteljau's Algorithm

Evaluate line segments at $t=\frac{1}{4}$, obtain $x_{0}^{[1]}, x_{1}^{[1]}, x_{2}^{[1]}$.

Illustration of de Casteljau's Algorithm

Repeat evaluation for new line segments to obtain $x_{0}^{[2]}, x_{1}^{[2]}$.

Illustration of de Casteljau's Algorithm

Repeat for the last segment to obtain $\beta_{3}\left(\frac{1}{4} ; b_{0}, b_{1}, b_{2}, b_{3}\right)=x_{0}^{[3]}$.

Illustration of de Casteljau's Algorithm

Same procedure for evaluation of $\beta_{3}\left(\frac{1}{2} ; b_{0}, b_{1}, b_{2}, b_{3}\right)$.

Illustration of de Casteljau's Algorithm

Same procedure for evaluation of $\beta_{3}\left(\frac{3}{4} ; b_{0}, b_{1}, b_{2}, b_{3}\right)$.

Illustration of de Casteljau's Algorithm

Complete curve $\beta_{3}\left(t ; b_{0}, b_{1}, b_{2}, b_{3}\right)$.

Composite Bézier Curves

Definition

A composite Bezier curve $B:[0, n] \rightarrow \mathbb{R}^{d}$ is defined as

$$
B(t):= \begin{cases}\beta_{K}\left(t ; b_{0}^{0}, \ldots, b_{K}^{0}\right) & \text { if } t \in[0,1], \\ \beta_{K}\left(t-i ; b_{0}^{i}, \ldots, b_{K}^{i}\right), & \text { if } t \in(i, i+1], \quad i=1, \ldots, n-1 .\end{cases}
$$

Composite Bézier Curves

Definition

A composite Bezier curve $B:[0, n] \rightarrow \mathbb{R}^{d}$ is defined as
$B(t):= \begin{cases}\beta_{K}\left(t ; b_{0}^{0}, \ldots, b_{K}^{0}\right) & \text { if } t \in[0,1], \\ \beta_{K}\left(t-i ; b_{0}^{i}, \ldots, b_{K}^{i}\right), & \text { if } t \in(i, i+1], \quad i=1, \ldots, n-1 .\end{cases}$
Denote i th segment by $B_{i}(t)=\beta_{K}\left(t ; b_{0}^{i}, \ldots, b_{K}^{i}\right)$ and $p_{i}=b_{0}^{i}$.

Composite Bézier Curves

Definition

A composite Bezier curve $B:[0, n] \rightarrow \mathbb{R}^{d}$ is defined as
$B(t):= \begin{cases}\beta_{K}\left(t ; b_{0}^{0}, \ldots, b_{K}^{0}\right) & \text { if } t \in[0,1], \\ \beta_{K}\left(t-i ; b_{0}^{i}, \ldots, b_{K}^{i}\right), & \text { if } t \in(i, i+1], \quad i=1, \ldots, n-1 .\end{cases}$
Denote i th segment by $B_{i}(t)=\beta_{K}\left(t ; b_{0}^{i}, \ldots, b_{K}^{i}\right)$ and $p_{i}=b_{0}^{i}$.

- continuous iff $B_{i-1}(1)=B_{i}(0), i=1, \ldots, n-1$

$$
\Rightarrow b_{K}^{i-1}=b_{0}^{i}=p_{i}, i=1, \ldots, n-1
$$

- continuously differentiable eff $p_{i}=\frac{1}{2}\left(b_{K-1}^{i-1}+b_{1}^{i}\right)$

Bézier Curves on a Manifold

Definition.

Let \mathcal{M} be a Riemannian manifold and $b_{0}, \ldots, b_{K} \in \mathcal{M}, K \in \mathbb{N}$.
The (generalized) Bézier curve of degree $k, k \leq K$, is defined as

$$
\beta_{k}\left(t ; b_{0}, \ldots, b_{k}\right)=g\left(t ; \beta_{k-1}\left(t ; b_{0}, \ldots, b_{k-1}\right), \beta_{k-1}\left(t ; b_{1}, \ldots, b_{k}\right)\right)
$$

if $k>0$, and

$$
\beta_{0}\left(t ; b_{0}\right)=b_{0}
$$

Bézier Curves on a Manifold

Definition.

Let \mathcal{M} be a Riemannian manifold and $b_{0}, \ldots, b_{K} \in \mathcal{M}, K \in \mathbb{N}$.
The (generalized) Bézier curve of degree $k, k \leq K$, is defined as

$$
\beta_{k}\left(t ; b_{0}, \ldots, b_{k}\right)=g\left(t ; \beta_{k-1}\left(t ; b_{0}, \ldots, b_{k-1}\right), \beta_{k-1}\left(t ; b_{1}, \ldots, b_{k}\right)\right)
$$

if $k>0$, and

$$
\beta_{0}\left(t ; b_{0}\right)=b_{0}
$$

- Bézier curves $\beta_{1}\left(t ; b_{0}, b_{1}\right)=g\left(t ; b_{0}, b_{1}\right)$ are geodesics.
- composite Bézier curves $B:[0, n] \rightarrow \mathcal{M}$ completely analogue (using geodesics for line segments)

Bézier Curves on a Manifold

Definition.

Let \mathcal{M} be a Riemannian manifold and $b_{0}, \ldots, b_{K} \in \mathcal{M}, K \in \mathbb{N}$.
The (generalized) Bézier curve of degree $k, k \leq K$, is defined as

$$
\beta_{k}\left(t ; b_{0}, \ldots, b_{k}\right)=g\left(t ; \beta_{k-1}\left(t ; b_{0}, \ldots, b_{k-1}\right), \beta_{k-1}\left(t ; b_{1}, \ldots, b_{k}\right)\right)
$$

if $k>0$, and

$$
\beta_{0}\left(t ; b_{0}\right)=b_{0}
$$

The Riemannian composite Bezier curve $B(t)$ is

- continuous iff $B_{i-1}(1)=B_{i}(0), i=1, \ldots, n-1$
$\Rightarrow b_{K}^{i-1}=b_{0}^{i}=: p_{i}, i=1, \ldots, n-1$
- continuously differentiable eff $p_{i}=g\left(\frac{1}{2} ; b_{K-1}^{i-1}, b_{1}^{i}\right)$

Bézier Curves on a Manifold

Definition.

Let \mathcal{M} be a Riemannian manifold and $b_{0}, \ldots, b_{K} \in \mathcal{M}, K \in \mathbb{N}$.
The (generalized) Bézier curve of degree $k, k \leq K$, is defined as

$$
\beta_{k}\left(t ; b_{0}, \ldots, b_{k}\right)=g\left(t ; \beta_{k-1}\left(t ; b_{0}, \ldots, b_{k-1}\right), \beta_{k-1}\left(t ; b_{1}, \ldots, b_{k}\right)\right)
$$

if $k>0$, and

$$
\beta_{0}\left(t ; b_{0}\right)=b_{0}
$$

The Riemannian composite Bezier curve $B(t)$ is

- continuous iff $B_{i-1}(1)=B_{i}(0), i=1, \ldots, n-1$ $\Rightarrow b_{K}^{i-1}=b_{0}^{i}=: p_{i}, i=1, \ldots, n-1$
- continuously differentiable iff $b_{K-1}^{i-1}=g\left(2 ; b_{1}^{i}, p_{i}\right)$.

Illustration of a Composite Bézier Curve on the Sphere \mathbb{S}^{2}

The directions, e.g. $\log _{p_{j}} b_{j}^{1}$, are now tangent vectors.

A Variational Model for Data Fitting

Let $d_{0}, \ldots, d_{n} \in \mathcal{M}$. A model for data fitting reads

$$
\mathcal{E}(B)=\frac{\lambda}{2} \sum_{k=0}^{n} d_{\mathcal{M}}^{2}\left(B(k), d_{k}\right)+\int_{0}^{n}\left\|\frac{D^{2} B(t)}{\mathrm{d} t^{2}}\right\|_{B(t)}^{2} \mathrm{~d} t, \quad \lambda>0
$$

where $B \in \Gamma$ is from the set of continuously differentiable composite Bezier curve of degree K with n segments.

A Variational Model for Data Fitting

Let $d_{0}, \ldots, d_{n} \in \mathcal{M}$. A model for data fitting reads

$$
\mathcal{E}(B)=\frac{\lambda}{2} \sum_{k=0}^{n} d_{\mathcal{M}}^{2}\left(B(k), d_{k}\right)+\int_{0}^{n}\left\|\frac{D^{2} B(t)}{\mathrm{d} t^{2}}\right\|_{B(t)}^{2} \mathrm{~d} t, \quad \lambda>0
$$

where $B \in \Gamma$ is from the set of continuously differentiable composite Bezier curve of degree K with n segments.

- Goal: find minimizer $B^{*} \in \Gamma$
- finite dimensional optimization problem in the control points b_{j}^{i}, ie. on \mathcal{M}^{L} with
- $L=n(K-1)+2$
- $\lambda \rightarrow \infty$ yields interpolation $\left(p_{k}=d_{k}\right) \Rightarrow L=n(K-2)+1$

Interlude: Second Order Differences on Manifolds

Second order difference:

$$
\mathrm{d}_{2}(x, y, z):=\min _{c \in \mathcal{C}_{x, z}} \mathrm{~d}_{\mathcal{M}}(c, y), \quad x, y, z \in \mathcal{M}
$$

$\mathcal{C}_{x, z}$ mid point(s) of geodesic(s) $g(\cdot ; x, z)$
$\frac{1}{2}\|x-2 y+z\|_{2}=\left\|\frac{1}{2}(x+z)-y\right\|_{2}$

$$
\min _{c \in \mathcal{C}_{x, z}} d_{\mathcal{M}}(c, y)
$$

Discretizing the Data Fitting Model

We discretize the absolute second order covariant derivative

$$
\int_{0}^{n}\left\|\frac{D^{2} B(t)}{\mathrm{d} t^{2}}\right\|_{\gamma(t)}^{2} \mathrm{~d} t \approx \sum_{k=1}^{N-1} \frac{\Delta_{s} d_{2}^{2}\left[B\left(s_{i-1}\right), B\left(s_{i}\right), B\left(s_{i+1}\right)\right]}{\Delta_{s}^{4}}
$$

on equidistant points s_{0}, \ldots, s_{N} with step size $\Delta_{s}=s_{1}-s_{0}$.
Evaluating $\mathcal{E}(B)$ consists of evaluation of geodesics and squared (Riemannian) distances

- $(N+1) K$ geodesics to evaluate the Bézier segments
- N geodesics to evaluate the mid points c
- N squared distances to obtain the second order absolute finite differences squared

Gradient of the Discretized Data Fitting Model

For the gradient of the discretized data fitting model
$\mathcal{E}(B)=\frac{\lambda}{2} \sum_{k=0}^{n} d_{\mathcal{M}}^{2}\left(B(k), d_{k}\right)+\sum_{k=1}^{N-1} \frac{\Delta_{s} d_{2}^{2}\left[B\left(s_{i-1}\right), B\left(s_{i}\right), B\left(s_{i+1}\right)\right]}{\Delta_{s}^{4}}$.
we

- identified first and last control points $p_{i}=b_{K}^{i-1}=b_{0}^{i}$
- plug in the constraint $b_{K-1}^{i-1}=g\left(2 ; b_{1}^{i}, p_{i}\right)$
\Rightarrow Introduces a further chain rule for the differential
\Rightarrow reduces the number of optimization variables.
- concatenation of adjoint Jacobi fields (evaluated at the points s_{i}) yields the gradient $\nabla_{\mathcal{N}} \mathcal{E}$.

The Differential of a Geodesic w.r.t. its Start Point

The geodesic variation

$$
\Gamma_{g, \xi}(s, t):=\exp _{\gamma_{x, \xi}(s)}(t \zeta(s)), \quad s \in(-\varepsilon, \varepsilon), t \in[0,1], \varepsilon>0
$$

is used to define the Jacobi field $J_{g, \xi}(t)=\left.\frac{\partial}{\partial s} \Gamma_{g, \xi}(s, t)\right|_{s=0}$.

Then the differential reads $D_{x} g(t ; \cdot, y)[\xi]=J_{g, \xi}(t)$.

Implementing Jacobi Fields

- On symmetric manifolds, the Jacobi field can be evaluated in closed form, since the PDE decouples into ODEs.
- The adjoint Jacobi fields $J_{g, \eta}^{*}(t)$ are characterized by
$\left\langle J_{g, \xi}(t), \eta\right\rangle_{g(t)}=\left\langle\xi, J_{g, \eta}^{*}(t)\right\rangle_{x}, \quad$ for all $\xi \in T_{x} \mathcal{M}, \eta \in T_{g(t ; x, y)} \mathcal{M}$
can be computed without extra efforts, i.e. the same ODEs occur.
\Rightarrow adjoint Jacobi fields can be used to calculate the gradient
- Gradient of iterated evaluations of geodesics can be computed by composition of (adjoint) Jacobi fields

Gradient Descent on a Manifold

Let $\mathcal{N}=\mathcal{M}^{L}$ be the product manifold of \mathcal{M}, Input.

- $\mathcal{E}: \mathcal{N} \rightarrow \mathbb{R}$,
- its gradient $\nabla_{\mathcal{N}} \mathcal{E}$,
- initial data $q^{(0)}=b \in \mathcal{N}$
- step sizes $s_{k}>0, k \in \mathbb{N}$.

Output: $\hat{q} \in \mathcal{N}$
$k \leftarrow 0$
repeat

$$
\begin{aligned}
& q^{(k+1)} \leftarrow \exp _{q^{(k)}}\left(-s_{k} \nabla_{\mathcal{N}} \mathcal{E}\left(q^{(k)}\right)\right) \\
& k \leftarrow k+1
\end{aligned}
$$

until a stopping criterion is reached
return $\hat{q}:=q^{(k)}$

Armijo Step Size Rule

Let $q=q^{(k)}$ be an iterate from the gradient descent algorithm, $\beta, \sigma \in(0,1), \alpha>0$.

Let m be the smallest positive integer such that

$$
\mathcal{E}(q)-\mathcal{E}\left(\exp _{q}\left(-\beta^{m} \alpha \nabla_{\mathcal{N}} \mathcal{E}(q)\right)\right) \geq \sigma \beta^{m} \alpha\left\|\nabla_{\mathcal{N}} \mathcal{E}(q)\right\|_{q}
$$

holds. Set the step size $s_{k}:=\beta^{m} \alpha$.

Minimizing with Known Minimizer

Minimizing with Known Minimizer

Interpolation by Bézier Curves with Minimal Acceleration.

A comp. Bezier curve (black) and its mnimizer (blue).

Approximation by Bézier Curves with Minimal Acceleration.

In the following video λ is slowly decreased from 10 to 0.

The initial setting, $\lambda=10$.

Approximation by Bézier Curves with Minimal Acceleration.

In the following video λ is slowly decreased from 10 to 0.

Summary of reducing λ from 10 (violet) to zero (yellow).

Comparison to Previous Approach

This curve (dashed) is "too global" to be solved in a tangent space (dotted) correctly, while our method (blue) still works.

An Example of Rotations $\mathcal{M}=\mathrm{SO}(3)$

Initialization with approach from composite splines
[Gousenbourger, Massart, Absil, 2018]

Our method outperforms the approach of solving linear
systems in tangent spaces, but their approach can serve as an initialization.

Summary

We investigated a model to minimize the acceleration of a Bézier curve

- using second order differences
- employing Jacobi fields
- using a gradient descent w.r.t. the control points Implement Algorithms in the Julia package

Manopt.jl-see http://manoptjl.org an manifold optimization toolbox in Julia.

Use an(y) algorithm for a(ny) model directly on a(ny) manifold efficiently in an open source programming language.

Selected References

Arnould，A．；Gousenbourger，P．－Y．；Samir，C．；Absil，P．－A．；Canis，M．（2015）．＂Fitting Smooth Paths on Riemannian Manifolds ：Endometrial Surface Reconstruction and Preoperative MRI－Based Navigation＂．GSI2015．Ed．by F．Nielsen；F．Barbaresco． Springer International Publishing，pp．491－498．DoI： 10．1007／978－3－319－25040－3＿53．
Bergmann，R．；Gousenbourger，P．－Y．（2018）．＂A variational model for data fitting on manifolds by minimizing the acceleration of a Bézier curve＂．Frontiers in Applied Mathematics and Statistics．DOI：10．3389／fams．2018．00059．arXiv：1807．10090．
Boumal，N．；Absil，P．A．（2011）．＂A discrete regression method on manifolds and its application to data on SO（n）＂．IFAC Proceedings Volumes（IFAC－PapersOnline）． Vol．18．PART 1，pp．2284－2289．DOI：10．3182／20110828－6－IT－1002．00542．
Gousenbourger，P．－Y．；Massart，E．；Absil，P．－A．（2018）．＂Data fitting on manifolds with composite Bézier－like curves and blended cubic splines＂．Journal of Mathematical Imaging and Vision．accepted．DOI：10．1007／s10851－018－0865－2．
Samir，C．；Absil，P．－A．；Srivastava，A．；Klassen，E．（2012）．＂A Gradient－Descent Method for Curve Fitting on Riemannian Manifolds＂．Foundations of Computational Mathematics 12．1，pp．49－73．DOI：10．1007／s10208－011－9091－7．

