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Introduction

A lot of theory and algorithms exist for unconstrained
problems
Minimize f(p) e M

where M is a smooth (Riemannian) manifold.

However: little work on the theory of constrained problems

Minimize f(p), p€E M,

st. g(p) <0,
and h(p) =0.

This talk: functions g: M — R™ and h: M — R%

[Absil, Mahony, Sepulchre, 2008; Udriste, 1988; Yang, Zhang, Song, 2014; Liu, Boumal, 2019 ]



First-Order Optimality Conditions on R"

For the Euclidean case M = R™ using the feasible set
Q:={zeR":g(z) <0, h(z) =0}.
A local minimizer z* necessarily satisfies
fl(z*)d>0 forallde To(z*) & —f(a*) € Ta(z*)°
where the (Bouligand) tangent cone is defined as

Ta(z™) = {d € R™: 3 sequences (zr) C Q, zr — =, (tr) \ O,

such that d = lim “#—% }
k—oco T

and B° denotes the polar cone of B.



KKT Conditions and Constraint Qualifications

Easier to work with the linearizing cone
T (z*) = {d € R" : gi(a*)d < 0 foralli € A(z*) (active),
Wy(x*)d=0 forallj=1,...,q}.
D Ta(z")
Then the KKT conditions
Lo(z*, 1, A) = f'(@") + pg'(@*) + AR (z*) =0,
{h(fv*) =0, =0, g(*)<0, pg()=0
are nothing but the statement
—f'(a*) € T (2*)°
But: A local minimizer z* is not necessarily a KKT point
—f'(@*) € Ta(a*)® # —f'(z") € TH"(@*)°

Solution: Constraint Qualifications to close this gap. ’



(Smooth) Manifold & Charts

A topological manifold M is a
- second countable Hausdorff topological space
- locally homeomorphic to R™
- local homeomorphisms:
charts wq: M D Uy — ¢(U,) CR™

A manifold M is smooth if the transition maps g o ¢, ",
a, 3 € A, are smooth.

The collection A = {(Ua; ¥a)} . 4 Of such charts “covering” M
is a smooth atlas.
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Examples
- asphere S”

- symmetric positive definite matrices P(n)

- special orthogonal group SO(n)



Tangent Space: Vectors and Covectors

- curve v: (—¢,¢) — M is C" about p if
7(0) = p and @4 07 is C"
- two C'-curves v, ¢ are equivalent if

4 (Pa 0 N B, = F(pa° OB,
- we introduce the linear map [¥(0)] on the equivalence

classes [y as [1(0))f = &(eao f)|
for all C" functions f: U — R, U c M about p.
The tangent space is defined as
= {[( ] is generated by some C”-curve « about p}.

and is a vector space.

It's dual space 7, M is called cotangent space, its elements
are called covectors.



The Tangent Cone in R

1. A tangent vector d € R™ s called tangent vector to
() at z if sequences x, — x, tx \ 0 exist such that

d = lim ——F

for all C'-functionsf near p.
k—o0 tr

[Bergmann, Herzog, 2018; Motreanu, Pavel, 1982; Yang, Zhang, Song, 2014]
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The Tangent Cone on M

1. A tangent vector [¥(0)] € TpM is called tangent vector to
() at p if sequences p;, — p, tx N\ 0 exist such that

((0)] = lim L&) = /(P)

for all C'-functionsf near p.
k—o0 tr

2. The collection of all tangent vectors to Q at p,
TapM = {[¥(0)] € TpM : [¥(0)] is a tangent vector to 2 at p}.

is called the (Bouligand) tangent cone to Q at p.

[Bergmann, Herzog, 2018; Motreanu, Pavel, 1982; Yang, Zhang, Song, 2014]



The Linearizing Cone

The linearizing cone to Q at p is defined as
TapM = {[3( M :[37(0))(g") <0 foralli e Alp),
[4(0)](h) =0 forallj=1,...,q}.
We can show the following results parallel to R™:
1. Forany p € ), Thn/\/l Is a closed convex cone, and
TopM C TomM

holds.
2. For any p € Q, we have (by Farkas lemma)

q
Tain M {Zm dg')p + > A (dhP),
7=1

w; > 0fori e A(p), pi =0 fori € Z(p), )\jeR}CT*M



Formulation of Constraint Qualifications

We define the following constraint qualifications at p € Q.

1. The LICQ holds at p if {(dh?)p}7_1 U {(dg")p}i active IS @
linearly independent set in the cotangent space 7, M.
2. The MFCQ holds at p if {(dhj)p}j.:1 Is a linearly
independent set and if there exists a tangent vector
X € TpM such that
X(¢") <0 forallic A(p),
X(h)=0 forallj=1,...,q
3. The ACQ holds at p if 742 M = To., M.

Op
4 The GCQ holds at p if Tg M® = To,p M°.

As in R", we can show

LICQ = MFCQ = ACQ = GCQ.



KKT Theorem on Manifolds

Theorem ' S
Suppose that p € Q is a local minimizer of our problem and

that one of the constraint qualifications holds at p.

Then there exist Lagrange multipliers p € Ry, and X € Rq such
that the KKT conditions

(df)p + 1 (dg)p + A (dh)p = O in TZM,

hold.

Note: All these properties are stated independent of the
choice of chart(s).



A Numerical Example




The Constrained Karcher Mean

R™ average z* = &+ SN, d; of data points d; € R" is the
unique solution of

2
5 T ER™

;N
Minimize N;‘x_di

On M: Karcher mean (Riemannian center of mass)
with constraints

N
L 1
Minimize NZ;dZM(p’di)’ peEM,
=

st df\/((p,po) —r?<0.

where dpq: M x M — R is the Riemannian distance.

10



Constrained Karcher Mean: Analysis

Since the feasible set 2 = {p € M : dp(p,py) <7} IS
compact, a global minimizer to the constrained Karcher mean
problem exists. Unlike in the case M = R", there may exist
additional local minimizers on manifolds with positive
sectional curvature.

Since the gradient (the Riesz representer of the derivative) of
dﬁvl (p,q) is equal to —2 log, q, we can express the KKT
conditions as

N

1 ] o
0= N Z(_z logp di? ')9 +:U’(_210gpp07 ')9 n 7;)M
1=1
2 2 2 2\
=0, dy(p.po) <r, w(dy(p,po)—r7)=0.

1



Constrained Karcher Mean: Solution

We consider the problem on the 2-sphere M = §?.

Solution (light green) and projected unconstrained solutions
(orange) for five different feasible sets (blue). The solution was
computed using a projected gradient descent method.
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Constraint Karcher Mean: Gradients

For one of the sets: gradient of the objective f (orange) and
the constraint ¢ (blue) 12



- KKT conditions for constrained optimization problems on
smooth manifolds.

- generalized the notion of tangent cone, linearizing cone
and their polars to manifolds.

- constrained Karcher mean problem as an example.

Future Work

- manifold-valued constraints.
- second-order optimality conditions

Thank you for your attention.
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