Intrinsic Formulation of KKT Conditions and Constraint Qualifications on Smooth Manifolds.^a

Ronny Bergmann Roland Herzog

Technische Universität Chemnitz

S16: Optimization, GAMM 2019

Vienna, February 20, 2019.

^a supported by DFG Grant BE 5888/2-1

Introduction

A lot of theory and algorithms exist for unconstrained problems

Minimize $f(\boldsymbol{p}) \in \mathcal{M}$

where \mathcal{M} is a smooth (Riemannian) manifold.

However: little work on the theory of constrained problems

 $\left\{ \begin{array}{rll} {\sf Minimize} & f({\boldsymbol p}), \quad {\boldsymbol p} \in \mathcal{M}, \\ {\sf s.t.} & g({\boldsymbol p}) \leq 0, \\ {\sf and} & h({\boldsymbol p}) = 0. \end{array} \right.$

This talk: functions $g: \mathcal{M} \to \mathbb{R}^m$ and $h: \mathcal{M} \to \mathbb{R}^q$.

[Absil, Mahony, Sepulchre, 2008; Udrişte, 1988; Yang, Zhang, Song, 2014; Liu, Boumal, 2019]

First-Order Optimality Conditions on \mathbb{R}^n

For the Euclidean case $\mathcal{M} = \mathbb{R}^n$ using the feasible set

$$\Omega \coloneqq \big\{ x \in \mathbb{R}^n : g(x) \le 0, \ h(x) = 0 \big\}.$$

A local minimizer x^* necessarily satisfies

$$f'(x^*) d \ge 0$$
 for all $d \in \mathcal{T}_{\Omega}(x^*) \quad \Leftrightarrow \quad -f'(x^*) \in \mathcal{T}_{\Omega}(x^*)^{\circ}$

where the (Bouligand) tangent cone is defined as

$$\mathcal{T}_{\Omega}(x^*) \coloneqq \left\{ d \in \mathbb{R}^n : \exists \text{ sequences } (x_k) \subset \Omega, \ x_k \to x^*, \ (t_k) \searrow 0, \right.$$
such that $d = \lim_{k \to \infty} \frac{x_k - x^*}{t_k} \right\}$

and B° denotes the polar cone of B.

KKT Conditions and Constraint Qualifications

Easier to work with the linearizing cone

$$\begin{aligned} \mathcal{T}_{\Omega}^{\mathrm{lin}}(x^*) &\coloneqq \left\{ d \in \mathbb{R}^n : g'_i(x^*) \, d \leq 0 \quad \text{for all } i \in \mathcal{A}(x^*) \text{ (active)}, \\ h'_j(x^*) \, d = 0 \quad \text{for all } j = 1, \dots, q \right\}. \\ &\supset \mathcal{T}_{\Omega}(x^*) \end{aligned}$$

Then the KKT conditions

$$\begin{cases} \mathcal{L}_x(x^*,\mu,\lambda) = f'(x^*) + \mu g'(x^*) + \lambda h'(x^*) = 0 \\ h(x^*) = 0, \quad \mu \ge 0, \quad g(x^*) \le 0, \quad \mu g(x^*) = 0 \end{cases}$$

are nothing but the statement

$$-f'(x^*) \in \mathcal{T}_{\Omega}^{\mathrm{lin}}(x^*)^{\circ}$$

But: A local minimizer x^* is not necessarily a KKT point:

$$-f'(x^*) \in \mathcal{T}_{\Omega}(x^*)^{\circ} \quad \not\Rightarrow \quad -f'(x^*) \in \mathcal{T}_{\Omega}^{\mathrm{lin}}(x^*)^{\circ}$$

Solution: Constraint Qualifications to close this gap.

A topological manifold ${\mathcal M}$ is a

- second countable Hausdorff topological space
- · locally homeomorphic to \mathbb{R}^n
- local homeomorphisms:

charts $\varphi_{\alpha} \colon \mathcal{M} \supset U_{\alpha} \to \varphi(U_{\alpha}) \subset \mathbb{R}^n$

A manifold \mathcal{M} is smooth if the transition maps $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$, $\alpha, \beta \in A$, are smooth.

The collection $\mathcal{A} := \{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in A}$ of such charts "covering" \mathcal{M} is a smooth atlas.

A topological manifold ${\mathcal M}$ is a

- \cdot second countable Hausdorff topological space
- · locally homeomorphic to \mathbb{R}^n
- local homeomorphisms:

charts $\varphi_{\alpha} \colon \mathcal{M} \supset U_{\alpha} \to \varphi(U_{\alpha}) \subset \mathbb{R}^n$

A manifold \mathcal{M} is smooth if the transition maps $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$, $\alpha, \beta \in A$, are smooth.

The collection $\mathcal{A} \coloneqq \{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in A}$ of such charts "covering" \mathcal{M} is a smooth atlas.

Examples

- \cdot a sphere \mathbb{S}^n
- + symmetric positive definite matrices $\mathcal{P}(n)$
- \cdot special orthogonal group $\mathrm{SO}(n)$

Tangent Space: Vectors and Covectors

+ curve $\gamma \colon (-\varepsilon,\varepsilon) \to \mathcal{M} \text{ is } C^1 \text{ about } p$ if

 $\gamma(0) = p$ and $\varphi_{\alpha} \circ \gamma$ is C^1

- two $C^{1}\text{-}\mathsf{curves}\;\gamma,\zeta$ are equivalent if

$$\frac{\mathrm{d}}{\mathrm{d}t}(\varphi_{\alpha}\circ\gamma)(t)\big|_{t=0} = \frac{\mathrm{d}}{\mathrm{d}t}(\varphi_{\alpha}\circ\zeta)(t)\big|_{t=0}$$

• we introduce the linear map $[\dot{\gamma}(0)]$ on the equivalence classes $[\gamma]$ as $[\dot{\gamma}(0)]f := \frac{\mathrm{d}}{\mathrm{d}t}(\varphi_{\alpha} \circ f)\Big|_{t=0}$ for all C^1 functions $f: U \to \mathbb{R}, U \subset \mathcal{M}$ about p.

The tangent space is defined as

 $\mathcal{T}_{p}\mathcal{M} \coloneqq \{ [\dot{\gamma}(0)] \colon [\dot{\gamma}(0)] \text{ is generated by some } C^{1}\text{-curve } \gamma \text{ about } p \}.$ and is a vector space.

It's dual space $\mathcal{T}_p^*\mathcal{M}$ is called cotangent space, its elements are called covectors.

The Tangent Cone in \mathbb{R}^n

1. A tangent vector $d \in \mathbb{R}^n$ is called tangent vector to Ω at x if sequences $x_k \to x$, $t_k \searrow 0$ exist such that

$$d = \lim_{k \to \infty} rac{x_k - x}{t_k}$$
 for all C^1 -functions f near p .

1. A tangent vector $d \in \mathbb{R}^n$ is called tangent vector to Ω at p if sequences $p_k \to p$, $t_k \searrow 0$ exist such that

$$d = \lim_{k \to \infty} rac{p_k - p}{t_k}$$
 for all C^1 -functions f near p .

1. A tangent vector $[\dot{\gamma}(0)] \in \mathcal{T}_p \mathcal{M}$ is called tangent vector to Ω at p if sequences $p_k \to p$, $t_k \searrow 0$ exist such that

$$[\dot{\gamma}(0)] = \lim_{k \to \infty} rac{f(oldsymbol{p}_k) - f(oldsymbol{p})}{t_k} \quad ext{for all } C^1 ext{-functions} f ext{ near } oldsymbol{p}.$$

1. A tangent vector $[\dot{\gamma}(0)] \in \mathcal{T}_p \mathcal{M}$ is called tangent vector to Ω at p if sequences $p_k \to p$, $t_k \searrow 0$ exist such that

$$[\dot{\gamma}(0)] = \lim_{k o \infty} rac{f(oldsymbol{p}_k) - f(oldsymbol{p})}{t_k} \;\;\;$$
 for all C^1 -functions f near $oldsymbol{p}$.

2. The collection of all tangent vectors to Ω at p,

 $\mathcal{T}_{\Omega;\boldsymbol{p}}\mathcal{M} \coloneqq \{ [\dot{\gamma}(0)] \in \mathcal{T}_{\boldsymbol{p}}\mathcal{M} : [\dot{\gamma}(0)] \text{ is a tangent vector to } \Omega \text{ at } \boldsymbol{p} \}.$

is called the (Bouligand) tangent cone to Ω at p.

The Linearizing Cone

The linearizing cone to Ω at p is defined as $\mathcal{T}_{\Omega;p}^{\mathrm{lin}}\mathcal{M} \coloneqq \left\{ [\dot{\gamma}(0)] \in \mathcal{T}_{p}\mathcal{M} : [\dot{\gamma}(0)](g^{i}) \leq 0 \quad \text{for all } i \in \mathcal{A}(p), \\ [\dot{\gamma}(0)](h^{j}) = 0 \quad \text{for all } j = 1, \dots, q \right\}.$

We can show the following results parallel to \mathbb{R}^n :

1. For any $p \in \Omega$, $\mathcal{T}_{\Omega;p}^{\mathrm{lin}}\mathcal{M}$ is a closed convex cone, and $\mathcal{T}_{\Omega;p}\mathcal{M} \subset \mathcal{T}_{\Omega;p}^{\mathrm{lin}}\mathcal{M}$

holds.

2. For any $oldsymbol{p}\in\Omega$, we have (by Farkas lemma)

$$\mathcal{T}_{\Omega;\boldsymbol{p}}^{\mathrm{lin}}\mathcal{M}^{\circ} = \left\{ \sum_{i=1}^{m} \mu_{i} \, (\mathrm{d}g^{i})_{\boldsymbol{p}} + \sum_{j=1}^{q} \lambda_{j} \, (\mathrm{d}h^{j})_{\boldsymbol{p}}, \\ \mu_{i} \geq 0 \text{ for } i \in \mathcal{A}(\boldsymbol{p}), \ \mu_{i} = 0 \text{ for } i \in \mathcal{I}(\boldsymbol{p}), \ \lambda_{j} \in \mathbb{R} \right\} \subset \mathcal{T}_{\boldsymbol{p}}^{*}\mathcal{M}$$

Formulation of Constraint Qualifications

We define the following constraint qualifications at $p \in \Omega$.

- 1. The LICQ holds at p if $\{(dh^j)_p\}_{j=1}^q \cup \{(dg^i)_p\}_i$ active is a linearly independent set in the cotangent space $\mathcal{T}_p^* \mathcal{M}$.
- 2. The MFCQ holds at p if $\{(dh^j)_p\}_{j=1}^q$ is a linearly independent set and if there exists a tangent vector $X \in \mathcal{T}_p \mathcal{M}$ such that

$$\begin{split} X(g^i) < 0 & \text{for all } i \in \mathcal{A}(\boldsymbol{p}), \\ X(h^j) = 0 & \text{for all } j = 1, \dots, q. \end{split}$$

3. The ACQ holds at p if $\mathcal{T}_{\Omega;p}^{\text{lin}}\mathcal{M} = \mathcal{T}_{\Omega;p}\mathcal{M}$.

4. The GCQ holds at p if $\mathcal{T}_{\Omega;p}^{\mathrm{lin}}\mathcal{M}^{\circ} = \mathcal{T}_{\Omega;p}\mathcal{M}^{\circ}$.

As in \mathbb{R}^n , we can show

$$\mathsf{LICQ} \ \Rightarrow \ \mathsf{MFCQ} \ \Rightarrow \ \mathsf{ACQ} \ \Rightarrow \ \mathsf{GCQ}.$$

Theorem

Suppose that $p \in \Omega$ is a local minimizer of our problem and that one of the constraint qualifications holds at p.

Then there exist Lagrange multipliers $\mu \in \mathbb{R}_m$ and $\lambda \in \mathbb{R}_q$ such that the KKT conditions

$$\begin{aligned} (\mathrm{d}f)_{p} + \mu \, (\mathrm{d}g)_{p} + \lambda \, (\mathrm{d}h)_{p} &= 0 \quad \text{in } \mathcal{T}_{p}^{*}\mathcal{M}, \\ h(p) &= 0, \\ \mu &\geq 0, \quad g(p) \leq 0, \quad \mu \, g(p) = 0 \end{aligned}$$

hold.

Note: All these properties are stated independent of the choice of chart(s).

A Numerical Example

The Constrained Karcher Mean

 \mathbb{R}^n : average $x^* = \frac{1}{N}\sum_{i=1}^N d_i$ of data points $d_i \in \mathbb{R}^n$ is the unique solution of

Minimize
$$\frac{1}{N}\sum_{i=1}^{N}|x-d_i|_2^2, x \in \mathbb{R}^n.$$

On \mathcal{M} : Karcher mean (Riemannian center of mass) with constraints

Minimize
$$\frac{1}{N} \sum_{i=1}^{N} d_{\mathcal{M}}^2(\boldsymbol{p}, \boldsymbol{d}_i), \quad p \in \mathcal{M},$$

s.t. $d_{\mathcal{M}}^2(\boldsymbol{p}, \boldsymbol{p}_0) - r^2 \leq 0.$

where $d_{\mathcal{M}} \colon \mathcal{M} \times \mathcal{M} \to \mathbb{R}$ is the Riemannian distance.

Since the feasible set $\Omega = \{ p \in \mathcal{M} : d_{\mathcal{M}}(p, p_0) \leq r \}$ is compact, a global minimizer to the constrained Karcher mean problem exists. Unlike in the case $\mathcal{M} = \mathbb{R}^n$, there may exist additional local minimizers on manifolds with positive sectional curvature.

Since the gradient (the Riesz representer of the derivative) of $d^2_{\mathcal{M}}(p,q)$ is equal to $-2 \log_p q$, we can express the KKT conditions as

$$0 = \frac{1}{N} \sum_{i=1}^{N} (-2\log_{\boldsymbol{p}} \boldsymbol{d}_{i}, \cdot)_{g} + \mu (-2\log_{\boldsymbol{p}} \boldsymbol{p}_{0}, \cdot)_{g} \text{ in } \mathcal{T}_{\boldsymbol{p}}^{*} \mathcal{M}$$
$$\mu \ge 0, \quad d_{\mathcal{M}}^{2}(\boldsymbol{p}, \boldsymbol{p}_{0}) \le r^{2}, \quad \mu (d_{\mathcal{M}}^{2}(\boldsymbol{p}, \boldsymbol{p}_{0}) - r^{2}) = 0.$$

Constrained Karcher Mean: Solution

Solution (light green) and projected unconstrained solutions (orange) for five different feasible sets (blue). The solution was computed using a projected gradient descent method.

Constraint Karcher Mean: Gradients

For one of the sets: gradient of the objective f (orange) and the constraint g (blue)

Summary

- KKT conditions for constrained optimization problems on smooth manifolds.
- generalized the notion of tangent cone, linearizing cone and their polars to manifolds.
- constrained Karcher mean problem as an example.

Future Work

- manifold-valued constraints.
- second-order optimality conditions

Thank you for your attention.

References

囯 Absil, P.-A.; Mahony, R.; Sepulchre, R. (2008). Optimization Algorithms on Matrix Manifolds. Princeton University Press. DOI: 10.1515/9781400830244. Ξ Bergmann, R.; Herzog, R. (2018). Intrinsic formulation of KKT conditions and constraint *aualifications on smooth manifolds*. SIAM Journal on Optimization, under revision. arXiv: 1804, 06214 Ξ Liu, C.; Boumal, N. (2019). "Simple algorithms for optimization on Riemannian manifolds with constraints" arXiv: 1901, 10000 Ξ Motreanu, D.; Pavel, N. H. (1982). "Quasitangent vectors in flow-invariance and optimization problems on Banach manifolds". Journal of Mathematical Analysis and Applications 88.1, pp. 116–132. DOI: 10.1016/0022-247X(82)90180-9. Ξ Udriste, C. (1988). "Kuhn-Tucker theorem on Riemannian manifolds". Topics in differential geometry, Vol. II (Debrecen, 1984). Vol. 46. Colloquia Mathematica Societatis János Bolyai. North-Holland, Amsterdam, pp. 1247–1259. = Yang, W. H.; Zhang, L.-H.; Song, R. (2014). "Optimality conditions for the nonlinear programming problems on Riemannian manifolds". Pacific Journal of Optimization 10.2, pp. 415-434.

https://ronnybergmann.net/talks/2019-GAMM-KKT-on-manifolds.pdf