Optimization on Manifolds

 for Models using Second Order DifferencesRonny Bergmann*
Technische Universität Chemnitz

Kolloquium über Angewandte Mathematik, Institut für Numerische und Angewandte Mathematik, Georg-August-Universität Göttingen,

May 28, 2019.
*joint with with M. Bačák, P.-Y. Gousenbourger, F. Laus, J. Persch, G. Steidl, A. Weinmann

Contents

1. Introduction
2. Second Order Differences
3. Second Order Total Variation
4. Acceleration of Bézier Curves

1. Introduction

Manifold-Valued Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

phase-valued data, $\mathcal{M}=\mathbb{S}^{1}$

Manifold-Valued Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

InSAR-Data of Mt. Vesuvius
[Rocca, Prati, Guarnieri, 1997]
phase-valued data, $\mathcal{M}=\mathbb{S}^{1}$

Manifold-Valued Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

National elevation dataset
[Gesch et al., 2009]
directional data, $\mathcal{M}=\mathbb{S}^{2}$

Manifold-Valued Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

diffusion tensors in human brain from the Camino dataset http://cmic.cs.ucl.ac.uk/camino
sym. pos. def. matrices, $\mathcal{M}=\operatorname{SPD}(3)$

Manifold-Valued Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

horizontal slice \#28
from the Camino dataset
http://cmic.cs.ucl.ac.uk/camino
sym. pos. def. matrices, $\mathcal{M}=\operatorname{SPD}(3)$

Manifold-Valued Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

EBSD example from the MTEX toolbox
[Bachmann, Hielscher, since 2005]
Rotations (mod. symmetry),

$$
\mathcal{M}=\mathrm{SO}(3)(/ \mathcal{S})
$$

Manifold-Valued Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

Common properties

- Range of values is a Riemannian manifold
- Tasks from "classical" image processing, e.g.
- denoising
- inpainting
- interpolation
- Labeling
- deblurring

A d-dimensional Riemannian Manifold \mathcal{M}

A d-dimensional Riemannian manifold can be informally defined as a set \mathcal{M} covered with a 'suitable' collection of charts, that identify subsets of \mathcal{M} with open subsets of \mathbb{R}^{d} and a continuously varying inner product on the tangential spaces.
[Absil, Mahony, Sepulchre, 2008]

A d-dimensional Riemannian Manifold \mathcal{M}

Geodesic $g(\cdot ; p, q)$ shortest path (on \mathcal{M}) between $p, q \in \mathcal{M}$ Tangent space $\mathrm{T}_{p} \mathcal{M}$ at p, with inner product $(\cdot, \cdot)_{p}$
Logarithmic $\operatorname{map} \log _{p} q=\dot{g}(0 ; p, q)$ "speed towards q " Exponential map $\exp _{p} X=g(1)$, where $g(0)=p, \dot{g}(0)=X$ Parallel transport $\mathrm{PT}_{p \rightarrow q}(Y)$ of $Y \in \mathrm{~T}_{p} \mathcal{M}$ along $g(\cdot ; p, q)$

Variational Methods on Manifolds

Variational methods model a trade-off between staying close to the data and minimizing a certain property

$$
\mathcal{E}(p)=D(p ; f)+\alpha R(p), \quad p \in \mathcal{M}
$$

- $\alpha>0$ is a weight
- \mathcal{M} is a Riemannian manifold
- given (input) data $f \in \mathcal{M}$
- data or similarity term $D(p ; f)$
- regularizer / prior $R(p)$

Optimization on Manifolds

Let \mathcal{M} and \mathcal{N} be Riemannian Manifolds and $\mathcal{E}: \mathcal{N} \rightarrow \mathbb{R}$.
Consider the optimization problem

$$
\underset{p \in \mathcal{N}}{\arg \min } \mathcal{E}(p)
$$

where \mathcal{E} is

- (maybe) non-smooth
- (locally) convex
- high-dimensional,
- a manifold valued signal, $\mathcal{N}=\mathcal{M}^{d}$
- a manifold-valued image, $\mathcal{N}=\mathcal{M}^{d_{1} \times d_{2}}$
- decomposable $\mathcal{E}=F+G$ in two (or even more) summands

A Signal of Cyclic Data

- Data f stems from the gray plot via modulo
- Jumps $>\pi$ at $\frac{5}{16}$ and $\frac{11}{16}$ just from choice of representation

A Signal of Cyclic Data

- Noise: wrapped Gaussian, $\sigma=0.2$
- noisy $f_{\mathrm{n}}=\left(f_{\mathrm{o}}+\eta\right)_{2 \pi}$

A Signal of Cyclic Data

- Comparison of $f_{0} \& f_{\mathrm{n}}$ width f_{R}
- Denoised with CPPA and realvalued $\operatorname{TV}_{1},\left(\alpha=\frac{3}{4}, \beta=0\right)$
- Artefacts at the "jumps that are none" from representation

A Signal of Cyclic Data

- Comparison of $f_{0} \& f_{\mathrm{n}}$ width f_{1}
- Denoised with CPPA and $\operatorname{TV}_{1}\left(\alpha=\frac{3}{4}, \beta=0\right)$
- but: stair caising

A Signal of Cyclic Data

- Comparison of $f_{0} \& f_{\mathrm{n}}$ width f_{2}
- Denoised with CPPA and TV $\mathrm{TV}_{2}\left(\alpha=0, \beta=\frac{3}{2}\right)$
- but: problems in constant areas

A Signal of Cyclic Data

- Comparison of $f_{0} \& f_{\mathrm{n}}$ width f_{3}
- Denoised with CPPA and $\mathrm{TV}_{1} \& \mathrm{TV}_{2}\left(\alpha=\frac{1}{4}, \beta=\frac{3}{4}\right)$
- combined: smallest mean squarred error.

2. Second Order Differences

First and Second Order Differences

On \mathbb{R}^{n}

- line $\gamma(t)=x+t(y-x)$
- distance $\|x-y\|_{2}$
- first order model
[Ruin, Usher, Fatemi, 1992]
$\sum_{i \in \mathcal{V}}\left\|f_{i}-u_{i}\right\|_{2}^{2}+\alpha \sum_{i \in \mathcal{G} \backslash\{N\}}\left\|u_{i}-u_{i+1}\right\|_{2}$

Riemannian manifold \mathcal{M}

- geodesic path $g(t ; p, q)$
- geodesic distance $d: \mathcal{M} \times \mathcal{M} \rightarrow \mathbb{R}$
- first order model
[Strekalovskiy, Cremers, 2011; Lellmann et al., 2013,
Weinmann, Demaret, Storath, 2014]

$$
\sum_{i \in \mathcal{V}} d\left(f_{i}, u_{i}\right)^{2}+\alpha \sum_{i \in \mathcal{G} \backslash\{N\}} d\left(u_{i}, u_{i+1}\right)
$$

First and Second Order Differences

On \mathbb{R}^{n}

- line $\gamma(t)=x+t(y-x)$
- distance $\|x-y\|_{2}$
- first order model
[Rudin, Osher, Fatemi, 1992]
$\sum_{i \in \mathcal{V}}\left\|f_{i}-u_{i}\right\|_{2}^{2}+\alpha \sum_{i \in \mathcal{G} \backslash\{N\}}\left\|u_{i}-u_{i+1}\right\|_{2}$
- second oder difference

$$
\|x-2 y+z\|_{2}
$$

Riemannian manifold \mathcal{M}

- geodesic path $g(t ; p, q)$
- geodesic distance $d: \mathcal{M} \times \mathcal{M} \rightarrow \mathbb{R}$
- first order model
[Strekalovskiy, Cremers, 2011; Lellmann et al., 2013,
Weinmann, Demaret, Storath, 2014]

$$
\sum_{i \in \mathcal{V}} d\left(f_{i}, u_{i}\right)^{2}+\alpha \sum_{i \in \mathcal{G} \backslash\{N\}} d\left(u_{i}, u_{i+1}\right)
$$

- How to model that on \mathcal{M} ?

First and Second Order Differences

On \mathbb{R}^{n}

- line $\gamma(t)=x+t(y-x)$
- distance $\|x-y\|_{2}$
- first order model
[Rudin, Osher, Fatemi, 1992]
$\sum_{i \in \mathcal{V}}\left\|f_{i}-u_{i}\right\|_{2}^{2}+\alpha \sum_{i \in \mathcal{G} \backslash\{N\}}\left\|u_{i}-u_{i+1}\right\|_{2}$
- second oder difference

$$
2\left\|\frac{1}{2}(x+z)-y\right\|_{2}
$$

Riemannian manifold \mathcal{M}

- geodesic path $g(t ; p, q)$
- geodesic distance $d: \mathcal{M} \times \mathcal{M} \rightarrow \mathbb{R}$
- first order model
[Strekalovskiy, Cremers, 2011; Lellmann et al., 2013, Weinmann, Demaret, Storath, 2014]

$$
\sum_{i \in \mathcal{V}} d\left(f_{i}, u_{i}\right)^{2}+\alpha \sum_{i \in \mathcal{G} \backslash\{N\}} d\left(u_{i}, u_{i+1}\right)
$$

- idea: mid point formulation

First and Second Order Differences

On \mathbb{R}^{n}

- line $\gamma(t)=x+t(y-x)$
- distance $\|x-y\|_{2}$
- first order model
[Rudin, Osher, Fatemi, 1992]
$\sum_{i \in \mathcal{V}}\left\|f_{i}-u_{i}\right\|_{2}^{2}+\alpha \sum_{i \in \mathcal{G} \backslash\{N\}}\left\|u_{i}-u_{i+1}\right\|_{2}$
- second oder difference

Riemannian manifold \mathcal{M}

- geodesic path $g(t ; p, q)$
- geodesic distance $d: \mathcal{M} \times \mathcal{M} \rightarrow \mathbb{R}$
- first order model
[Strekalovskiy, Cremers, 2011; Lellmann et al., 2013, Weinmann, Demaret, Storath, 2014]

$$
\sum_{i \in \mathcal{V}} d\left(f_{i}, u_{i}\right)^{2}+\alpha \sum_{i \in \mathcal{G} \backslash\{N\}} d\left(u_{i}, u_{i+1}\right)
$$

- idea: mid point formulation

Absolute Second Order Difference

We denote the set of mid points between $x, z \in \mathcal{M}$ as
$\mathcal{C}_{x, z}:=\left\{c \in \mathcal{M}: c=g\left(\frac{1}{2} ; x, z\right)\right.$ for any geodesic $\left.g(\cdot ; x, z):[0,1] \rightarrow \mathcal{M}\right\}$ and define the Absolute Second Order Difference
[Bergmann, Laus, et al., 2014; Bačák et al., 2016]

$$
d_{2}(x, y, z):=\min _{c \in \mathcal{C}_{x, z}} d(c, y), \quad x, y, z \in \mathcal{M}
$$

For Optimization we need the differential and gradient of d_{2} with respect to all its three arguments. For example for the first argument we have a chain rule of the distance and $g\left(\frac{1}{2} ; \cdot, z\right)$

Differential and Gradient

The differential $D_{p} f=D f: T \mathcal{M} \rightarrow \mathbb{R}$ of a real-valued function $f: \mathcal{M} \rightarrow \mathbb{R}$ is the push-forward of f.

For a composition $F(p)=(g \circ h)(p)=g(h(p))$ of two functions $g, h: \mathcal{M} \rightarrow \mathcal{M}$ the chain rule reads

$$
D_{p} F[X]=D_{h(p)} g\left[D_{p} h[X]\right]
$$

where $D_{p} h[X] \in T_{h(p)} \mathcal{M}$ and $D_{p} F[X] \in T_{F(p)} \mathcal{M}$.
The gradient $\nabla f: \mathcal{M} \rightarrow T \mathcal{M}$ is the tangent vector fulfilling

$$
\left(\nabla_{\mathcal{M}} f(p), Y\right)_{p}=D f(p)[Y] \text { for all } Y \in T_{p} \mathcal{M}
$$

ie. $\nabla f(p) \in T_{p} \mathcal{M}$ is a tangent vector at p.

The Differential of a Geodesic w.r.t. its Start Point

The geodesic variation

$$
\Gamma_{g, X}(s, t):=\exp _{g_{p, X}(s)}(t Y(s)), \quad s \in(-\varepsilon, \varepsilon), t \in[0,1], \varepsilon>0
$$

is used to define the Jacobi field $J_{g, X}(t)=\left.\frac{\partial}{\partial s} \Gamma_{g, X}(s, t)\right|_{s=0}$.

Then the differential reads $D_{p} g(t ; \cdot, q)[X]=J_{g, X}(t)$.

Implementing Jacobi Fields on Symmetric Spaces

A manifold is symmetric if for every geodesic g and every $p \in \mathcal{M}$ the mapping $g(t) \mapsto g(-t)$ is an isometry at least locally around $p=g(0)$.

Then the system of ODEs characterizing the Jacobi field

$$
\frac{D^{2}}{\mathrm{~d} t^{2}} J_{g, X}+R\left(J_{g, X}, \dot{g}\right) \dot{g}=0, \quad J_{g, X}(0)=X, J_{g, X}(1)=0
$$

- has constant coefficients
- one can diagonalize the curvature tensor R,
- let κ_{ℓ} denote its eigenvalues
- let $\left\{X_{1}, \ldots, X_{d}\right\} \subseteq T_{p} \mathcal{M}$ be an ONB to these eigenvalues with $X_{1}=\log _{p} q$.
- parallel transport $\Xi_{j}(t)=\mathrm{PT}_{p \rightarrow g(t ; p, q)} X_{j}, j=1, \ldots, d$

Implementing Jacobi Fields on Symmetric Spaces II

Decompose $X=\sum_{i=1}^{d} \eta_{\ell} X_{\ell}$. Then

$$
D_{p} g(t ; p, q)[X]=J_{g, X}(t)=\sum_{\ell=1}^{d} \eta_{\ell} J_{g, X_{\ell}}(t)
$$

with

$$
J_{g, X_{\ell}}(t)= \begin{cases}\frac{\sinh \left(d_{g}(1-t) \sqrt{-\kappa_{\ell}}\right)}{\sinh \left(d_{g} \sqrt{-\kappa_{\ell}}\right)} \Xi_{\ell}(t) & \text { if } \kappa_{\ell}<0 \\ \frac{\sin \left(d_{g}(1-t) \sqrt{\kappa_{\ell}}\right)}{\sin \left(\sqrt{\kappa_{\ell}} d_{g}\right)} \Xi_{\ell}(t) & \text { if } \kappa_{\ell}>0 \\ (1-t) \Xi_{\ell}(t) & \text { if } \kappa_{\ell}=0\end{cases}
$$

where $d_{g}=d(p, q)$ is the length of the geodesic.

Implementing the Gradient Using Adjoint Jacobi Fields.

The adjoint Jacobi fields

$$
J_{g, \cdot}^{*}(t): T_{g(t ; p, q)} \mathcal{M} \rightarrow T_{p} \mathcal{M}
$$

are characterized by
$\left(J_{g, X}(t), Y\right)_{g(t)}=\left(X, J_{g, Y}^{*}(t)\right)_{p}$, for all $X \in T_{p} \mathcal{M}, Y \in T_{g(t ; p, q)} \mathcal{M}$.

- computed using the same ODEs
\Rightarrow calculate gradient of $f(x)=d(y, c), c=g\left(\frac{1}{2} ; x, z\right)$, as

$$
\nabla f(x)=J_{g, Y}^{*}\left(\frac{1}{2}\right), \quad g=g(\cdot ; x, z), Y=-\frac{\log _{c} y}{\left\|\log _{c} y\right\|_{c}}
$$

- the gradient of iterated evaluations of geodesics
\Rightarrow (sum of) composition of (adjoint) Jacobi fields

3. Second Order Total Variation

A Second Order TV-type Model on Manifolds

For \mathcal{M}-valued signals f we can hence define

$$
\mathcal{E}(u):=\sum_{i \in \mathcal{V}} d\left(f_{i}, u_{i}\right)^{2}+\alpha \sum_{i \in \mathcal{G} \backslash\{N\}} d\left(u_{i}, u_{i+1}\right)+\beta \sum_{i \in \mathcal{G} \backslash\{1, N\}} d_{2}\left(u_{i-1}, u_{i}, u_{i+1}\right)
$$

A Second Order TV-type Model on Manifolds

For \mathcal{M}-valued signals f we can hence define
$\mathcal{E}(u):=\sum_{i \in \mathcal{V}} d\left(f_{i}, u_{i}\right)^{2}+\alpha \sum_{i \in \mathcal{G} \backslash\{N\}} d\left(u_{i}, u_{i+1}\right)+\beta \sum_{i \in \mathcal{G} \backslash\{1, N\}} d_{2}\left(u_{i-1}, u_{i}, u_{i+1}\right)$

For images additionally: use
$\|w-x+y-z\|_{2}=2\left\|\frac{1}{2}(w+y)-\frac{1}{2}(x+z)\right\|_{2}$ for
Absolute Second Order Mixed Difference

$$
d_{1,1}(w, x, y, z):=\min _{c \in \mathcal{C}_{w, y}, \tilde{c} \in \mathcal{C}_{x, z}} d(c, \tilde{c}), \quad w, x, y, z \in \mathcal{M}
$$

Proximal Map

For $\varphi: \mathcal{M}^{n} \rightarrow(-\infty,+\infty]$ and $\lambda>0$ we define the Proximal
Map as

$$
\operatorname{prox}_{\lambda \varphi}(p):=\underset{u \in \mathcal{M}^{n}}{\arg \min } \frac{1}{2} \sum_{i=1}^{n} d\left(u_{i}, p_{i}\right)^{2}+\lambda \varphi(u) .
$$

! For a Minimizer u^{*} of φ we have $\operatorname{prox}_{\lambda \varphi}\left(u^{*}\right)=u^{*}$.

- For $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ proper, convex, lower semicontinuous:
- the proximal map is unique.
- PPA $x_{k}=\operatorname{prox}_{\lambda \varphi}\left(x_{k-1}\right)$ converges to $\arg \min \varphi$
- For $\varphi=\mathcal{E}$ not that useful

The Cyclic Proximal Point Algorithm

For $\varphi=\sum_{l=1}^{c} \varphi_{l}$ the
Cyclic Proximal Point-Algorithmus (CPPA) reads

$$
p^{\left(k+\frac{l+1}{c}\right)}=\operatorname{prox}_{\lambda_{k} \varphi_{l}}\left(p^{\left(k+\frac{l}{c}\right)}\right), \quad l=0, \ldots, c-1, k=0,1, \ldots
$$

On a Hadamard manifold \mathcal{M} :
convergence to a minimizer of φ if

- all φ_{l} proper, convex, lower semicontinuous
- $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}} \in \ell_{2}(\mathbb{N}) \backslash \ell_{1}(\mathbb{N})$.

Ansatz.

- efficient Proximal Maps for every summand of $\mathcal{E}(u)$.
- speed up by parallelization

Proximal Maps for Distance and TV summands

Let $g(\cdot ; p, q):[0,1] \rightarrow \mathcal{M}$ be a geodesic between $p, q \in \mathcal{M}$.
Theorem (Distance term)
[Ferreira, Oliveira, 2002]
For $\varphi(p)=d^{2}(p, f)$ with fixed $f \in \mathcal{M}$ we have

$$
\operatorname{prox}_{\lambda \varphi}(p)=g\left(\frac{\lambda d(p, f)}{1+\lambda d(p, f)} ; p, f\right)
$$

Theorem (First Order Difference Term)
For $\varphi(p, q)=d(p, q)$ we have

$$
\operatorname{prox}_{\lambda \varphi}(p, q)=(g(t ; p, q), g(1-t ; p, q))
$$

with

$$
t= \begin{cases}\frac{\lambda}{d(p, q)} & \text { if } \lambda<\frac{1}{2} d(p, q) \\ \frac{1}{2} & \text { else. }\end{cases}
$$

Proximal Maps for the TV_{2} Summands

To compute

$$
\operatorname{prox}_{\lambda d_{2}}(p)=\underset{u \in \mathcal{M}^{3}}{\arg \min }\left\{\frac{1}{2} \sum_{i=1}^{3} d\left(u_{i}, p_{i}\right)^{2}+\lambda d_{2}\left(u_{1}, u_{2}, u_{3}\right)\right\}
$$

We have

- a closed form solution for $\mathcal{M}=\mathbb{S}^{1}$
- use a sub gradient descent (as inner problem) with

$$
\nabla_{\mathcal{M}^{3}} d_{2}=\left(\nabla_{\mathcal{M}} d_{2}\left(\cdot, p_{2}, p_{3}\right), \nabla_{\mathcal{M}} d_{2}\left(p_{1}, \cdot, p_{3}\right), \nabla_{\mathcal{M}} d_{2}\left(p_{1}, p_{2}, \cdot\right)\right)^{\mathrm{T}}
$$

where
$\cdot \nabla_{\mathcal{M}} d_{2}\left(p_{1}, \cdot, p_{3}\right)(y)=-\frac{\log _{y} c\left(p_{1}, p_{3}\right)}{\left\|\log _{p_{2}} c\left(p_{1}, p_{3}\right)\right\|_{p_{2}}} \in T_{y} \mathcal{M}$

- $\nabla_{\mathcal{M}} d_{2}\left(\cdot, p_{2}, p_{3}\right)$ and analogously $\nabla_{\mathcal{M}} d_{2}\left(p_{1}, p_{2}, \cdot\right)$ using (adjoint) Jacobi fields and a chain rule

Bernoulli's Lemniscate on the sphere \mathbb{S}^{2}

$\gamma(t):=\frac{a \sqrt{2}}{\sin ^{2}(t)+1}(\cos (t), \cos (t) \sin (t), 1)^{\mathrm{T}}, \quad t \in[0,2 \pi], a=\frac{\pi}{2 \sqrt{2}}$.
Generate a sphere-valued signal by

noisy lemniscate of Bernoulli on \mathbb{S}^{2}, Gaussian noise, $\sigma=\frac{\pi}{30}$, on $T_{p} \mathbb{S}^{2}$.

Bernoulli's Lemniscate on the sphere \mathbb{S}^{2}

$\gamma(t):=\frac{a \sqrt{2}}{\sin ^{2}(t)+1}(\cos (t), \cos (t) \sin (t), 1)^{\mathrm{T}}, \quad t \in[0,2 \pi], a=\frac{\pi}{2 \sqrt{2}}$.
Generate a sphere-valued signal by

$$
\gamma_{S}(t)=\exp _{p}(\gamma(t)), p=(0,0,1)^{\mathrm{T}}
$$

reconstruction with $\mathrm{TV}_{1}, \alpha=0.21, \mathrm{MAE}=4.08 \times 10^{-2}$.

Bernoulli's Lemniscate on the sphere \mathbb{S}^{2}

$\gamma(t):=\frac{a \sqrt{2}}{\sin ^{2}(t)+1}(\cos (t), \cos (t) \sin (t), 1)^{\mathrm{T}}, \quad t \in[0,2 \pi], a=\frac{\pi}{2 \sqrt{2}}$.
Generate a sphere-valued signal by

reconstruction with $\mathrm{TV}_{2}, \alpha=0, \beta=10, \mathrm{MAE}=3.66 \times 10^{-2}$.

Bernoulli's Lemniscate on the sphere \mathbb{S}^{2}

$\gamma(t):=\frac{a \sqrt{2}}{\sin ^{2}(t)+1}(\cos (t), \cos (t) \sin (t), 1)^{\mathrm{T}}, \quad t \in[0,2 \pi], a=\frac{\pi}{2 \sqrt{2}}$.
Generate a sphere-valued signal by

reconstruction with $\mathrm{TV}_{1} \& \mathrm{TV}_{2}, \alpha=0.16, \beta=12.4, \mathrm{MAE}=3.27 \times 10^{-2}$.

Inpainting of $\mathcal{P}(3)$-valued Images

Draw symmetric positive definite 3×3 matrices as ellipsoids

original data

Inpainting of $\mathcal{P}(3)$-valued Images

Draw symmetric positive definite 3×3 matrices as ellipsoids

original data

lost (a lot of) data

Inpainting of $\mathcal{P}(3)$-valued Images

Draw symmetric positive definite 3×3 matrices as ellipsoids

original data

inpainted with $\alpha=\beta=0.05$,

$$
M A E=0.0929
$$

Inpainting of $\mathcal{P}(3)$-valued Images

Draw symmetric positive definite 3×3 matrices as ellipsoids

original data

inpainted with $\alpha=0.1$,

$$
M A E=0.0712
$$

4. Acceleration of Bézier Curves

Data Fitting on Manifolds

Given data points d_{0}, \ldots, d_{n} on a Riemannian manifold \mathcal{M} and time points $t_{i} \in I$, find a "nice" curve $\gamma: I \rightarrow \mathcal{M}, \gamma \in \Gamma$, such that $\gamma\left(t_{i}\right)=d_{i}$ (interpolation) or $\gamma\left(t_{i}\right) \approx d_{i}$ (approximation).

Data Fitting on Manifolds

Given data points d_{0}, \ldots, d_{n} on a Riemannian manifold \mathcal{M} and time points $t_{i} \in I$, find a "nice" curve $\gamma: I \rightarrow \mathcal{M}, \gamma \in \Gamma$, such that $\gamma\left(t_{i}\right)=d_{i}$ (interpolation) or $\gamma\left(t_{i}\right) \approx d_{i}$ (approximation).

- Γ set of geodesics \& approximation: geodesic regression
[Rentmeesters, 2011; Fletcher, 2013; Boumal, Absil, 2011]
- Г Sobolev space of curves: Inifinite-dimensional problem
[Samir et al., 2012]
- Γ composite Bézier curves; LSs in tangent spaces
[Arnould et al., 2015; Gousenbourger, Massart, Absil, 2018]
- Discretized curve, $\Gamma=\mathcal{M}^{N}$,

Data Fitting on Manifolds

Given data points d_{0}, \ldots, d_{n} on a Riemannian manifold \mathcal{M} and time points $t_{i} \in I$, find a "nice" curve $\gamma: I \rightarrow \mathcal{M}, \gamma \in \Gamma$, such that $\gamma\left(t_{i}\right)=d_{i}$ (interpolation) or $\gamma\left(t_{i}\right) \approx d_{i}$ (approximation).

- Γ set of geodesics \& approximation: geodesic regression
[Rentmeesters, 2011; Fletcher, 2013; Boumal, Absil, 2011]
- Γ Sobolev space of curves: Inifinite-dimensional problem
[Samir et al., 2012]
- Γ composite Bézier curves; LSs in tangent spaces
[Arnould et al., 2015; Gousenbourger, Massart, Absil, 2018]
- Discretized curve, $\Gamma=\mathcal{M}^{N}$,

This talk.

"nice" means minimal (discretized) acceleration ("as straight as possible") for Γ the set of composite Bézier curves.

Closed form solution for $\mathcal{M}=\mathbb{R}^{d}$: Natural (cubic) splines.

(Euclidean) Bézier Curves

Definition

A Bézier curve β_{K} of degree $K \in \mathbb{N}_{0}$ is a function
$\beta_{K}:[0,1] \rightarrow \mathbb{R}^{d}$ parametrized by control points $b_{0}, \ldots, b_{K} \in \mathbb{R}^{d}$ and defined by

$$
\beta_{K}\left(t ; b_{0}, \ldots, b_{K}\right):=\sum_{j=0}^{K} b_{j} B_{j, K}(t)
$$

[Bernstein, 1912]
where $B_{j, K}=\binom{K}{j} t^{j}(1-t)^{K-j}$ are the Bernstein polynomials of degree K.

Evaluation via Casteljau's algorithm.

Illustration of de Casteljau's Algorithm

b_{1}
0

$$
\begin{gathered}
b_{2} \\
0
\end{gathered}
$$

$$
\stackrel{\circ}{b_{0}}
$$

The set of control points $b_{0}, b_{1}, b_{2}, b_{3}$.

Illustration of de Casteljau's Algorithm

Evaluate line segments at $t=\frac{1}{4}$, obtain $x_{0}^{[1]}, x_{1}^{[1]}, x_{2}^{[1]}$.

Illustration of de Casteljau's Algorithm

Repeat evaluation for new line segments to obtain $x_{0}^{[2]}, x_{1}^{[2]}$.

Illustration of de Casteljau's Algorithm

Repeat for the last segment to obtain $\beta_{3}\left(\frac{1}{4} ; b_{0}, b_{1}, b_{2}, b_{3}\right)=x_{0}^{[3]}$.

Illustration of de Casteljau's Algorithm

Same procedure for evaluation of $\beta_{3}\left(\frac{1}{2} ; b_{0}, b_{1}, b_{2}, b_{3}\right)$.

Illustration of de Casteljau's Algorithm

Same procedure for evaluation of $\beta_{3}\left(\frac{3}{4} ; b_{0}, b_{1}, b_{2}, b_{3}\right)$.

Illustration of de Casteljau's Algorithm

Complete curve $\beta_{3}\left(t ; b_{0}, b_{1}, b_{2}, b_{3}\right)$.

Composite Bézier Curves

Definition

A composite Bezier curve $B:[0, n] \rightarrow \mathbb{R}^{d}$ is defined as

$$
B(t):= \begin{cases}\beta_{K}\left(t ; b_{0}^{0}, \ldots, b_{K}^{0}\right) & \text { if } t \in[0,1], \\ \beta_{K}\left(t-i ; b_{0}^{i}, \ldots, b_{K}^{i}\right), & \text { if } t \in(i, i+1], \quad i=1, \ldots, n-1 .\end{cases}
$$

Composite Bézier Curves

Definition

A composite Bezier curve $B:[0, n] \rightarrow \mathbb{R}^{d}$ is defined as
$B(t):= \begin{cases}\beta_{K}\left(t ; b_{0}^{0}, \ldots, b_{K}^{0}\right) & \text { if } t \in[0,1], \\ \beta_{K}\left(t-i ; b_{0}^{i}, \ldots, b_{K}^{i}\right), & \text { if } t \in(i, i+1], \quad i=1, \ldots, n-1 .\end{cases}$
Denote i th segment by $B_{i}(t)=\beta_{K}\left(t ; b_{0}^{i}, \ldots, b_{K}^{i}\right)$ and $p_{i}=b_{0}^{i}$.

Composite Bézier Curves

Definition

A composite Bezier curve $B:[0, n] \rightarrow \mathbb{R}^{d}$ is defined as
$B(t):= \begin{cases}\beta_{K}\left(t ; b_{0}^{0}, \ldots, b_{K}^{0}\right) & \text { if } t \in[0,1], \\ \beta_{K}\left(t-i ; b_{0}^{i}, \ldots, b_{K}^{i}\right), & \text { if } t \in(i, i+1], \quad i=1, \ldots, n-1 .\end{cases}$
Denote i th segment by $B_{i}(t)=\beta_{K}\left(t ; b_{0}^{i}, \ldots, b_{K}^{i}\right)$ and $p_{i}=b_{0}^{i}$.

- continuous iff $B_{i-1}(1)=B_{i}(0), i=1, \ldots, n-1$

$$
\Rightarrow b_{K}^{i-1}=b_{0}^{i}=p_{i}, i=1, \ldots, n-1
$$

- continuously differentiable iff $p_{i}=\frac{1}{2}\left(b_{K-1}^{i-1}+b_{1}^{i}\right)$

Bézier Curves on a Manifold

Definition.

Let \mathcal{M} be a Riemannian manifold and $b_{0}, \ldots, b_{K} \in \mathcal{M}, K \in \mathbb{N}$.
The (generalized) Bézier curve of degree $k, k \leq K$, is defined as

$$
\beta_{k}\left(t ; b_{0}, \ldots, b_{k}\right)=g\left(t ; \beta_{k-1}\left(t ; b_{0}, \ldots, b_{k-1}\right), \beta_{k-1}\left(t ; b_{1}, \ldots, b_{k}\right)\right)
$$

if $k>0$, and

$$
\beta_{0}\left(t ; b_{0}\right)=b_{0}
$$

Bézier Curves on a Manifold

Definition.

Let \mathcal{M} be a Riemannian manifold and $b_{0}, \ldots, b_{K} \in \mathcal{M}, K \in \mathbb{N}$.
The (generalized) Bézier curve of degree $k, k \leq K$, is defined as

$$
\beta_{k}\left(t ; b_{0}, \ldots, b_{k}\right)=g\left(t ; \beta_{k-1}\left(t ; b_{0}, \ldots, b_{k-1}\right), \beta_{k-1}\left(t ; b_{1}, \ldots, b_{k}\right)\right)
$$

if $k>0$, and

$$
\beta_{0}\left(t ; b_{0}\right)=b_{0}
$$

- Bézier curves $\beta_{1}\left(t ; b_{0}, b_{1}\right)=g\left(t ; b_{0}, b_{1}\right)$ are geodesics.
- composite Bézier curves $B:[0, n] \rightarrow \mathcal{M}$ completely analogue (using geodesics for line segments)

Bézier Curves on a Manifold

Definition.

Let \mathcal{M} be a Riemannian manifold and $b_{0}, \ldots, b_{K} \in \mathcal{M}, K \in \mathbb{N}$.
The (generalized) Bézier curve of degree $k, k \leq K$, is defined as

$$
\beta_{k}\left(t ; b_{0}, \ldots, b_{k}\right)=g\left(t ; \beta_{k-1}\left(t ; b_{0}, \ldots, b_{k-1}\right), \beta_{k-1}\left(t ; b_{1}, \ldots, b_{k}\right)\right)
$$

if $k>0$, and

$$
\beta_{0}\left(t ; b_{0}\right)=b_{0} .
$$

The Riemannian composite Bezier curve $B(t)$ is

- continuous iff $B_{i-1}(1)=B_{i}(0), i=1, \ldots, n-1$ $\Rightarrow b_{K}^{i-1}=b_{0}^{i}=: p_{i}, i=1, \ldots, n-1$
- continuously differentiable iff $p_{i}=g\left(\frac{1}{2} ; b_{K-1}^{i-1}, b_{1}^{i}\right)$

Bézier Curves on a Manifold

Definition.

Let \mathcal{M} be a Riemannian manifold and $b_{0}, \ldots, b_{K} \in \mathcal{M}, K \in \mathbb{N}$.
The (generalized) Bézier curve of degree $k, k \leq K$, is defined as

$$
\beta_{k}\left(t ; b_{0}, \ldots, b_{k}\right)=g\left(t ; \beta_{k-1}\left(t ; b_{0}, \ldots, b_{k-1}\right), \beta_{k-1}\left(t ; b_{1}, \ldots, b_{k}\right)\right)
$$

if $k>0$, and

$$
\beta_{0}\left(t ; b_{0}\right)=b_{0} .
$$

The Riemannian composite Bezier curve $B(t)$ is

- continuous iff $B_{i-1}(1)=B_{i}(0), i=1, \ldots, n-1$ $\Rightarrow b_{K}^{i-1}=b_{0}^{i}=: p_{i}, i=1, \ldots, n-1$
- continuously differentiable iff $b_{K-1}^{i-1}=g\left(2 ; b_{1}^{i}, p_{i}\right)$.

Illustration of a Composite Bézier Curve on the Sphere \mathbb{S}^{2}

The directions, e.g. $\log _{p_{j}} b_{j}^{1}$, are now tangent vectors.

A Variational Model for Data Fitting

Let $d_{0}, \ldots, d_{n} \in \mathcal{M}$. A model for data fitting reads

$$
\mathcal{E}(B)=\frac{\lambda}{2} \sum_{k=0}^{n} d_{\mathcal{M}}^{2}\left(B(k), d_{k}\right)+\int_{0}^{n}\left\|\frac{D^{2} B(t)}{\mathrm{d} t^{2}}\right\|_{B(t)}^{2} \mathrm{~d} t, \quad \lambda>0
$$

where $B \in \Gamma$ is from the set of continuously differentiable composite Bezier curve of degree K with n segments.

A Variational Model for Data Fitting

Let $d_{0}, \ldots, d_{n} \in \mathcal{M}$. A model for data fitting reads

$$
\mathcal{E}(B)=\frac{\lambda}{2} \sum_{k=0}^{n} d_{\mathcal{M}}^{2}\left(B(k), d_{k}\right)+\int_{0}^{n}\left\|\frac{D^{2} B(t)}{\mathrm{d} t^{2}}\right\|_{B(t)}^{2} \mathrm{~d} t, \quad \lambda>0
$$

where $B \in \Gamma$ is from the set of continuously differentiable composite Bezier curve of degree K with n segments.

- Goal: find minimizer $B^{*} \in \Gamma$
- finite dimensional optimization problem in the control points b_{j}^{i}, i.e. on \mathcal{M}^{L} with
- $L=n(K-1)+2$
- $\lambda \rightarrow \infty$ yields interpolation $\left(p_{k}=d_{k}\right) \Rightarrow L=n(K-2)+1$

A Variational Model for Data Fitting

Let $d_{0}, \ldots, d_{n} \in \mathcal{M}$. A model for data fitting reads

$$
\mathcal{E}(B)=\frac{\lambda}{2} \sum_{k=0}^{n} d_{\mathcal{M}}^{2}\left(B(k), d_{k}\right)+\int_{0}^{n}\left\|\frac{D^{2} B(t)}{\mathrm{d} t^{2}}\right\|_{B(t)}^{2} \mathrm{~d} t, \quad \lambda>0
$$

where $B \in \Gamma$ is from the set of continuously differentiable composite Bezier curve of degree K with n segments.

- Goal: find minimizer $B^{*} \in \Gamma$
- finite dimensional optimization problem in the control points b_{j}^{i}, i.e. on \mathcal{M}^{L} with
- $L=n(K-1)+2$
- $\lambda \rightarrow \infty$ yields interpolation $\left(p_{k}=d_{k}\right) \Rightarrow L=n(K-2)+1$
- On $\mathcal{M}=\mathbb{R}^{m}$: closed form solution, natural (cubic) splines

Discretizing the Data Fitting Model

We discretize the absolute second order covariant derivative

$$
\int_{0}^{n}\left\|\frac{D^{2} B(t)}{\mathrm{d} t^{2}}\right\|_{\gamma(t)}^{2} \mathrm{~d} t \approx \sum_{k=1}^{N-1} \frac{\Delta_{s} d_{2}^{2}\left[B\left(s_{i-1}\right), B\left(s_{i}\right), B\left(s_{i+1}\right)\right]}{\Delta_{s}^{4}}
$$

on equidistant points s_{0}, \ldots, s_{N} with step size $\Delta_{s}=s_{1}-s_{0}$.
Evaluating $\mathcal{E}(B)$ consists of evaluation of geodesics and squared (Riemannian) distances

- $(N+1) K$ geodesics to evaluate the Bézier segments
- N geodesics to evaluate the mid points
- N squared distances to obtain the second order absolute finite differences squared

Gradient of the Discretized Data Fitting Model

For the gradient of the discretized data fitting model
$\mathcal{E}(B)=\frac{\lambda}{2} \sum_{k=0}^{n} d_{\mathcal{M}}^{2}\left(B(k), d_{k}\right)+\sum_{k=1}^{N-1} \frac{\Delta_{s} d_{2}^{2}\left[B\left(s_{i-1}\right), B\left(s_{i}\right), B\left(s_{i+1}\right)\right]}{\Delta_{s}^{4}}$.
we

- identified first and last control points $p_{i}=b_{K}^{i-1}=b_{0}^{i}$
- plug in the constraint $b_{K-1}^{i-1}=g\left(2 ; b_{1}^{i}, p_{i}\right)$
\Rightarrow Introduces a further chain rule for the differential
\Rightarrow reduces the number of optimization variables.
- concatenation of adjoint Jacobi fields (evaluated at the points s_{i}) yields the gradient $\nabla_{\mathcal{N}} \mathcal{E}$.

Gradient Descent on a Manifold

Let $\mathcal{N}=\mathcal{M}^{L}$ be the product manifold of \mathcal{M}, Input.

- $\mathcal{E}: \mathcal{N} \rightarrow \mathbb{R}$,
- its gradient $\nabla_{\mathcal{N}} \mathcal{E}$,
- initial data $q^{(0)}=b \in \mathcal{N}$
- step sizes $s_{k}>0, k \in \mathbb{N}$.

Output: $\hat{q} \in \mathcal{N}$
$k \leftarrow 0$
repeat

$$
\begin{aligned}
& q^{(k+1)} \leftarrow \exp _{q^{(k)}}\left(-s_{k} \nabla_{\mathcal{N}} \mathcal{E}\left(q^{(k)}\right)\right) \\
& k \leftarrow k+1
\end{aligned}
$$

until a stopping criterion is reached
return $\hat{q}:=q^{(k)}$

Armijo Step Size Rule

Let $q=q^{(k)}$ be an iterate from the gradient descent algorithm, $\beta, \sigma \in(0,1), \alpha>0$.

Let m be the smallest positive integer such that

$$
\mathcal{E}(q)-\mathcal{E}\left(\exp _{q}\left(-\beta^{m} \alpha \nabla_{\mathcal{N}} \mathcal{E}(q)\right)\right) \geq \sigma \beta^{m} \alpha\left\|\nabla_{\mathcal{N}} \mathcal{E}(q)\right\|_{q}
$$

holds. Set the step size $s_{k}:=\beta^{m} \alpha$.

Minimizing with Known Minimizer

Minimizing with Known Minimizer

Interpolation by Bézier Curves with Minimal Acceleration.

A comp. Bezier curve (black) and its mnimizer (blue).

Approximation by Bézier Curves with Minimal Acceleration.

In the following video λ is slowly decreased from 10 to 0.

The initial setting, $\lambda=10$.

Approximation by Bézier Curves with Minimal Acceleration.

In the following video λ is slowly decreased from 10 to 0.

Summary of reducing λ from 10 (violet) to zero (yellow).

Comparison to Previous Approach

This curve (dashed) is "too global" to be solved in a tangent space (dotted) correctly, while our method (blue) still works.

An Example of Rotations $\mathcal{M}=\mathrm{SO}(3)$

Initialization with approach from composite splines
[Gousenbourger, Massart, Absil, 2018]

Our method outperforms the approach of solving linear
systems in tangent spaces, but their approach can serve as an initialization.

Further Models and Algorithms

Models in manifold-valued imaging.

- Infimal Convolution [Bergmann, fitschen, et al, 2017; Bergmann, Fitschen, et al., 2018]
- TGV
[Bergmann, Fitschen, et al., 2018; Bredies et al., 2018]
- Nonlocal TV using the Graph Laplacian
- denoising using second order statistics

Algorithms In manifold-valued imaging.

- Douglas-Rachford splitting on Hadamard manifolds
[Bergmann, Persch, Steidl, 2016]
- Half-quadratic Minimization (iteratively reweighted least squares)

Summary

We defined second order differences on Riemannian manifolds.

Two variational models: second order total variation and minimizing the acceleration of a Bézier curve.

We further presented two algorithms to minimize the corresponding Variational Models: Cyclic Proximal Point Algorithm (for nonsmooth) and Gradient Descent (for smooth) to minimize the model.

Future Work

- further models (Bézier surfaces, manifolds with no closed form for Jacobi fields,...)
- further algorithms, e.g. for constraint optimization
- further manifolds, e.g. infinite dimensional ones

Implement Algorithms in Manopt. jl an upcoming manifold optimization toolbox for Julia paradigm:

Being able to use an(y) algorithm for a(ny) model directly on $a(n y)$ manifold efficiently.
...in an open source programming language.

Selected References on Total Variation

目
Bačák，M．；Bergmann，R．；Steidl，G．；Weinmann，A．（2016）．＂A Second Order Non－Smooth Variational Model for Restoring Manifold－Valued Images＂．SIAM Journal on Scientific Computing 38．1，A567－A597．DOI：10．1137／15M101988X．
Bergmann，R．；Fitschen，J．H．；Persch，J．；Steidl，G．（2018）．＂Priors with Coupled First and Second Order Differences for Manifold－Valued Image Processing＂．Journal of Mathematical Imaging and Vision 60．9，pp．1459－1481．DOI：
10．1007／s10851－018－0840－y．
Bergmann，R．；Tenbrinck，D．（2018）．＂A graph framework for manifold－valued data＂．SIAM Journal on Imaging Sciences 11．1，pp．325－360．DOI：10．1137／17M1118567．
Laus，F．；Nikolova，M．；Persch，J．；Steidl，G．（2017）．＂A Nonlocal Denoising Algorithm for Manifold－Valued Images Using Second Order Statistics＂．SIAM Journal on Imaging Sciences 10．1，pp．416－448．DOI：10．1137／16M1087114．
Lellmann，J．；Strekalovskiy，E．；Koetter，S．；Cremers，D．（2013）．＂Total variation regularization for functions with values in a manifold＂．IEEE ICCV 2013，pp．2944－2951． DOI：10．1109／ICCV ．2013．366．

目
Weinmann，A．；Demaret，L．；Storath，M．（2014）．＂Total variation regularization for manifold－valued data＂．SIAM Journal on Imaging Sciences 7．4，pp．2226－2257．DOI： 10．1137／130951075．

Selected References on Bézier Curves

Arnould，A．；Gousenbourger，P．－Y．；Samir，C．；Absil，P．－A．；Canis，M．（2015）．＂Fitting Smooth Paths on Riemannian Manifolds ：Endometrial Surface Reconstruction and Preoperative MRI－Based Navigation＂．GSI2015．Ed．by F．Nielsen；F．Barbaresco． Springer International Publishing，pp．491－498．DOI：
10．1007／978－3－319－25040－3＿53．
Bergmann，R．；Gousenbourger，P．－Y．（2018）．＂A variational model for data fitting on manifolds by minimizing the acceleration of a Bézier curve＂．Frontiers in Applied Mathematics and Statistics．DOI：10．3389／fams．2018．00059．arXiv：1807．10090．
Boumal，N．；Absil，P．A．（2011）．＂A discrete regression method on manifolds and its application to data on SO（n）＂．IFAC Proceedings Volumes（IFAC－PapersOnline）． Vol．18．PART 1，pp．2284－2289．DOI：10．3182／20110828－6－IT－1002．00542．
Gousenbourger，P．－Y．；Massart，E．；Absil，P．－A．（2018）．＂Data fitting on manifolds with composite Bézier－like curves and blended cubic splines＂．Journal of Mathematical Imaging and Vision．accepted．DOI：10．1007／s10851－018－0865－2．
Samir，C．；Absil，P．－A．；Srivastava，A．；Klassen，E．（2012）．＂A Gradient－Descent Method for Curve Fitting on Riemannian Manifolds＂．Foundations of Computational Mathematics 12．1，pp．49－73．DOI：10．1007／s10208－011－9091－7．

