Optimization on Manifolds for Models using Second Order Differences

Ronny Bergmann* Technische Universität Chemnitz

Kolloquium über Angewandte Mathematik, Institut für Numerische und Angewandte Mathematik, Georg-August-Universität Göttingen,

May 28, 2019.

*joint with with M. Bačák, P.-Y. Gousenbourger, F. Laus, J. Persch, G. Steidl, A. Weinmann

- 1. Introduction
- 2. Second Order Differences
- 3. Second Order Total Variation
- 4. Acceleration of Bézier Curves

1. Introduction

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

InSAR-Data of Mt. Vesuvius [Rocca, Prati, Guarnieri, 1997]

phase-valued data, $\mathcal{M}=\mathbb{S}^1$

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

InSAR-Data of Mt. Vesuvius [Rocca, Prati, Guarnieri, 1997]

phase-valued data, $\mathcal{M} = \mathbb{S}^1$

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

National elevation dataset [Gesch et al., 2009]

directional data, $\mathcal{M} = \mathbb{S}^2$

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

diffusion tensors in human brain from the Camino dataset http://cmic.cs.ucl.ac.uk/camino

sym. pos. def. matrices, $\mathcal{M} = \mathrm{SPD}(3)$

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

horizontal slice #28 from the Camino dataset http://cmic.cs.ucl.ac.uk/camino sym. pos. def. matrices, $\mathcal{M} = \mathrm{SPD}(3)$

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

EBSD example from the MTEX toolbox [Bachmann, Hielscher, since 2005] Rotations (mod. symmetry), $\mathcal{M} = \mathrm{SO}(3)(/\mathcal{S}).$

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

Common properties

- Range of values is a Riemannian manifold
- Tasks from "classical" image processing, e.g.
 - denoising
 - inpainting
 - interpolation
 - labeling
 - deblurring

A d-dimensional Riemannian Manifold ${\cal M}$

A *d*-dimensional Riemannian manifold can be informally defined as a set \mathcal{M} covered with a 'suitable' collection of charts, that identify subsets of \mathcal{M} with open subsets of \mathbb{R}^d and a continuously varying inner product on the tangential spaces. [Absil, Mahony, Sepulchre, 2008]

A d-dimensional Riemannian Manifold ${\cal M}$

Geodesic $g(\cdot; p, q)$ shortest path (on \mathcal{M}) between $p, q \in \mathcal{M}$ **Tangent space** $T_p\mathcal{M}$ at p, with inner product $(\cdot, \cdot)_p$ **Logarithmic map** $\log_p q = \dot{g}(0; p, q)$ "speed towards q" **Exponential map** $\exp_p X = g(1)$, where $g(0) = p, \dot{g}(0) = X$ **Parallel transport** $\operatorname{PT}_{p \to q}(Y)$ of $Y \in T_p\mathcal{M}$ along $g(\cdot; p, q)$ Variational methods model a trade-off between staying close to the data and minimizing a certain property

$$\mathcal{E}(p) = D(p; f) + \alpha R(p), \quad p \in \mathcal{M}$$

- + α > 0 is a weight
- $\cdot \,\, \mathcal{M}$ is a Riemannian manifold
- given (input) data $f \in \mathcal{M}$
- data or similarity term D(p; f)
- regularizer / prior R(p)

Optimization on Manifolds

Let \mathcal{M} and \mathcal{N} be Riemannian Manifolds and $\mathcal{E}: \mathcal{N} \to \mathbb{R}$. Consider the optimization problem

 $\underset{p \in \mathcal{N}}{\arg\min} \, \mathcal{E}(p)$

where ${\mathcal E}$ is

- \cdot (maybe) non-smooth
- (locally) convex
- high-dimensional,
 - a manifold valued signal, $\mathcal{N}=\mathcal{M}^d$
 - a manifold-valued image, $\mathcal{N} = \mathcal{M}^{d_1 imes d_2}$
- decomposable $\mathcal{E} = F + G$ in two (or even more) summands

• noisy $f_n = (f_0 + \eta)_{2\pi}$

- Denoised with CPPA and realvalued TV₁, ($\alpha = \frac{3}{4}, \beta = 0$)
- Artefacts at the "jumps that are none" from representation

• but: stair caising

• but: problems in constant areas

- Denoised with CPPA and $TV_1 \& TV_2 (\alpha = \frac{1}{4}, \beta = \frac{3}{4})$
- · combined: smallest mean squarred error.

2. Second Order Differences

On \mathbb{R}^n

- line $\gamma(t) = x + t(y x)$
- distance $||x y||_2$
- first order model [Rudin, Osher, Fatemi, 1992]

$$\sum_{i \in \mathcal{V}} \|f_i - u_i\|_2^2 + \alpha \sum_{i \in \mathcal{G} \setminus \{N\}} \|u_i - u_{i+1}\|_2$$

Riemannian manifold ${\cal M}$

- geodesic path g(t; p, q)
- geodesic distance $d \colon \mathcal{M} \times \mathcal{M} \to \mathbb{R}$
- first order model

$$\sum_{i \in \mathcal{V}} d(f_i, u_i)^2 + \alpha \sum_{i \in \mathcal{G} \setminus \{N\}} d(u_i, u_{i+1})$$

On \mathbb{R}^n

- line $\gamma(t) = x + t(y x)$
- distance $||x y||_2$
- first order model [Rudin, Osher, Fatemi, 1992]

$$\sum_{i \in \mathcal{V}} \|f_i - u_i\|_2^2 + \alpha \sum_{i \in \mathcal{G} \setminus \{N\}} \|u_i - u_{i+1}\|_2$$

second oder difference

$$\|x-2y+z\|_2$$

Riemannian manifold ${\cal M}$

- geodesic path g(t; p, q)
- geodesic distance $d \colon \mathcal{M} \times \mathcal{M} \to \mathbb{R}$
- first order model

On \mathbb{R}^n

- line $\gamma(t) = x + t(y x)$
- distance $||x y||_2$
- first order model [Rudin, Osher, Fatemi, 1992]

$$\sum_{i \in \mathcal{V}} \|f_i - u_i\|_2^2 + \alpha \sum_{i \in \mathcal{G} \setminus \{N\}} \|u_i - u_{i+1}\|_2$$

second oder difference

$$2\|\frac{1}{2}(x+z) - y\|_2$$

Riemannian manifold ${\cal M}$

- geodesic path g(t; p, q)
- geodesic distance $d \colon \mathcal{M} \times \mathcal{M} \to \mathbb{R}$
- first order model

On \mathbb{R}^n

- line $\gamma(t) = x + t(y x)$
- distance $||x y||_2$
- first order model [Rudin, Osher, Fatemi, 1992]

$$\sum_{i \in \mathcal{V}} \|f_i - u_i\|_2^2 + \alpha \sum_{i \in \mathcal{G} \setminus \{N\}} \|u_i - u_{i+1}\|_2$$

second oder difference

$$2\|c(x,z)-y\|_2$$

Riemannian manifold ${\cal M}$

- geodesic path g(t; p, q)
- geodesic distance $d \colon \mathcal{M} \times \mathcal{M} \to \mathbb{R}$
- first order model

We denote the set of mid points between $x, z \in \mathcal{M}$ as

 $\mathcal{C}_{x,z} \coloneqq \left\{ c \in \mathcal{M} : c = g(\frac{1}{2}; x, z) \text{ for any geodesic } g(\cdot; x, z) \colon [0, 1] \to \mathcal{M} \right\}$

and define the Absolute Second Order Difference [Bergmann, Laus, et al., 2014; Bačák et al., 2016]

$$d_2(x, y, z) \coloneqq \min_{c \in \mathcal{C}_{x,z}} d(c, y), \qquad x, y, z \in \mathcal{M}.$$

For Optimization we need the differential and gradient of d_2 with respect to all its three arguments. For example for the first argument we have a chain rule of the distance and $g(\frac{1}{2}; \cdot, z)$

The differential $D_p f = Df : T\mathcal{M} \to \mathbb{R}$ of a real-valued function $f : \mathcal{M} \to \mathbb{R}$ is the push-forward of f.

For a composition $F(p) = (g \circ h)(p) = g(h(p))$ of two functions $g, h: \mathcal{M} \to \mathcal{M}$ the chain rule reads

 $D_p F[X] = D_{h(p)} g \big[D_p h[X] \big],$

where $D_ph[X] \in T_{h(p)}\mathcal{M}$ and $D_pF[X] \in T_{F(p)}\mathcal{M}$.

The gradient $\nabla f \colon \mathcal{M} \to T\mathcal{M}$ is the tangent vector fulfilling

 $(\nabla_{\mathcal{M}} f(p), Y)_p = Df(p)[Y] \text{ for all } Y \in T_p\mathcal{M},$

i.e. $\nabla f(p) \in T_p \mathcal{M}$ is a tangent vector at p.

The geodesic variation

 $\Gamma_{g,X}(s,t) \coloneqq \exp_{q_{p,X}(s)}(tY(s)), \qquad s \in (-\varepsilon,\varepsilon), \ t \in [0,1], \varepsilon > 0.$ is used to define the Jacobi field $J_{q,X}(t) = \frac{\partial}{\partial s} \Gamma_{q,X}(s,t)|_{s=0}$. g(t; p, q) $g(\cdot; p, q)$ $\neg \Gamma_{a,X}(s,t)$ Y(0) $\overline{X} = J_{a,X}(0)$ $\Gamma_{g,X}(\hat{s},0)$ $\Gamma_{a,X}(s,0) = g_{p,X}(s)$ Then the differential reads $D_pg(t; \cdot, q)[X] = J_{q,X}(t)$.

10

Implementing Jacobi Fields on Symmetric Spaces

A manifold is symmetric if for every geodesic g and every $p \in \mathcal{M}$ the mapping $g(t) \mapsto g(-t)$ is an isometry at least locally around p = g(0).

Then the system of ODEs characterizing the Jacobi field

$$\frac{D^2}{dt^2}J_{g,X} + R(J_{g,X}, \dot{g})\dot{g} = 0, \qquad J_{g,X}(0) = X, \ J_{g,X}(1) = 0$$

- has constant coefficients
- one can diagonalize the curvature tensor R,
- · let κ_ℓ denote its eigenvalues
- let $\{X_1, \ldots, X_d\} \subseteq T_p \mathcal{M}$ be an ONB to these eigenvalues with $X_1 = \log_p q$.
- parallel transport $\Xi_j(t) = \operatorname{PT}_{p \to g(t;p,q)} X_j$, $j = 1, \dots, d$

Implementing Jacobi Fields on Symmetric Spaces II

Decompose
$$X = \sum_{i=1}^d \eta_\ell X_\ell$$
. Then

$$D_p g(t; p, q)[X] = J_{g,X}(t) = \sum_{\ell=1}^d \eta_\ell J_{g,X_\ell}(t),$$

with

$$J_{g,X_{\ell}}(t) = \begin{cases} \frac{\sinh\left(d_g(1-t)\sqrt{-\kappa_{\ell}}\right)}{\sinh(d_g\sqrt{-\kappa_{\ell}})} \Xi_{\ell}(t) & \text{if } \kappa_{\ell} < 0\\ \frac{\sin\left(d_g(1-t)\sqrt{\kappa_{\ell}}\right)}{\sin(\sqrt{\kappa_{\ell}}d_g)} \Xi_{\ell}(t) & \text{if } \kappa_{\ell} > 0\\ (1-t)\Xi_{\ell}(t) & \text{if } \kappa_{\ell} = 0 \end{cases}$$

where $d_g = d(p,q)$ is the length of the geodesic.

Implementing the Gradient Using Adjoint Jacobi Fields.

The adjoint Jacobi fields

$$J_{g,\cdot}^*(t): T_{g(t;p,q)}\mathcal{M} \to T_p\mathcal{M}$$

are characterized by

 $(J_{g,X}(t),Y)_{g(t)} = (X,J^*_{g,Y}(t))_p$, for all $X \in T_p\mathcal{M}, Y \in T_{g(t;p,q)}\mathcal{M}$.

- computed using the same ODEs
- \Rightarrow calculate gradient of $f(x) = d(y,c), c = g(\frac{1}{2};x,z)$, as

$$\nabla f(x) = J_{g,Y}^*(\frac{1}{2}), \quad g = g(\cdot; x, z), \ Y = -\frac{\log_c y}{\|\log_c y\|_c}$$

• the gradient of iterated evaluations of geodesics \Rightarrow (sum of) composition of (adjoint) Jacobi fields

3. Second Order Total Variation

For \mathcal{M} -valued signals f we can hence define

$$\mathcal{E}(u) \coloneqq \sum_{i \in \mathcal{V}} d(f_i, u_i)^2 + \alpha \sum_{i \in \mathcal{G} \setminus \{N\}} d(u_i, u_{i+1}) + \beta \sum_{i \in \mathcal{G} \setminus \{1, N\}} d_2(u_{i-1}, u_i, u_{i+1})$$

For \mathcal{M} -valued signals f we can hence define

$$\mathcal{E}(u) \coloneqq \sum_{i \in \mathcal{V}} d(f_i, u_i)^2 + \alpha \sum_{i \in \mathcal{G} \setminus \{N\}} d(u_i, u_{i+1}) + \beta \sum_{i \in \mathcal{G} \setminus \{1, N\}} d_2(u_{i-1}, u_i, u_{i+1})$$

For images additionally: use $\|w - x + y - z\|_2 = 2\|\frac{1}{2}(w + y) - \frac{1}{2}(x + z)\|_2$ for Absolute Second Order Mixed Difference

$$d_{1,1}(w,x,y,z) \coloneqq \min_{c \in \mathcal{C}_{w,y}, \tilde{c} \in \mathcal{C}_{x,z}} d(c, \tilde{c}), \qquad w, x, y, z \in \mathcal{M}.$$

For $\varphi \colon \mathcal{M}^n \to (-\infty, +\infty]$ and $\lambda > 0$ we define the Proximal Map as [Moreau, 1965; Rockafellar, 1976; Ferreira, Oliveira, 2002]

$$\operatorname{prox}_{\lambda\varphi}(p) \coloneqq \operatorname*{arg\,min}_{u \in \mathcal{M}^n} \frac{1}{2} \sum_{i=1}^n d(u_i, p_i)^2 + \lambda\varphi(u).$$

- ! For a Minimizer u^* of φ we have $\operatorname{prox}_{\lambda\varphi}(u^*) = u^*$.
- For $\varphi \colon \mathbb{R}^n \to \mathbb{R}$ proper, convex, lower semicontinuous:
 - the proximal map is unique.
 - PPA $x_k = \operatorname{prox}_{\lambda\varphi}(x_{k-1})$ converges to $\arg\min\varphi$
- For $\varphi = \mathcal{E}$ not that useful

The Cyclic Proximal Point Algorithm

For
$$\varphi = \sum_{l=1}^{c} \varphi_l$$
 the

Cyclic Proximal Point-Algorithmus (CPPA) reads

$$p^{(k+\frac{l+1}{c})} = \operatorname{prox}_{\lambda_k \varphi_l}(p^{(k+\frac{l}{c})}), \quad l = 0, \dots, c-1, \ k = 0, 1, \dots$$

On a Hadamard manifold \mathcal{M} :

convergence to a minimizer of φ if

- \cdot all $arphi_l$ proper, convex, lower semicontinuous
- $\{\lambda_k\}_{k\in\mathbb{N}}\in\ell_2(\mathbb{N})\setminus\ell_1(\mathbb{N}).$

Ansatz.

ŗ

- efficient Proximal Maps for every summand of $\mathcal{E}(u)$.
- speed up by parallelization
Proximal Maps for Distance and $\operatorname{TV}\nolimits$ summands

Let $g(\cdot; p, q) \colon [0, 1] \to \mathcal{M}$ be a geodesic between $p, q \in \mathcal{M}$.

Theorem (Distance term) For $\varphi(p) = d^2(p, f)$ with fixed $f \in \mathcal{M}$ we have

[Ferreira, Oliveira, 2002]

$$\operatorname{prox}_{\lambda\varphi}(p) = g\left(\frac{\lambda d(p, f)}{1 + \lambda d(p, f)}; p, f\right)$$

Theorem (First Order Difference Term) [Weinmann, Demaret, Storath, 2014] For $\varphi(p,q) = d(p,q)$ we have

$$\operatorname{prox}_{\lambda\varphi}(p,q) = (g(t;p,q), g(1-t;p,q))$$

with

$$t = \begin{cases} \frac{\lambda}{d(p,q)} & \text{ if } \lambda < \frac{1}{2}d(p,q) \\ \frac{1}{2} & \text{ else.} \end{cases}$$

Proximal Maps for the TV_2 Summands

To compute

$$\operatorname{prox}_{\lambda d_2}(p) = \arg\min_{u \in \mathcal{M}^3} \left\{ \frac{1}{2} \sum_{i=1}^3 d(u_i, p_i)^2 + \lambda d_2(u_1, u_2, u_3) \right\}$$

We have

- a closed form solution for $\mathcal{M}=\mathbb{S}^1$ [Bergmann, Laus, et al., 2014]
- use a sub gradient descent (as inner problem) with

 $\nabla_{\mathcal{M}^3} d_2 = (\nabla_{\mathcal{M}} d_2(\cdot, p_2, p_3), \nabla_{\mathcal{M}} d_2(p_1, \cdot, p_3), \nabla_{\mathcal{M}} d_2(p_1, p_2, \cdot))^{\mathrm{T}}.$

where

- $\nabla_{\mathcal{M}} d_2(p_1, \cdot, p_3)(y) = -\frac{\log_y c(p_1, p_3)}{\|\log_{p_2} c(p_1, p_3)\|_{p_2}} \in T_y \mathcal{M}$
- $\nabla_{\mathcal{M}} d_2(\cdot, p_2, p_3)$ and analogously $\nabla_{\mathcal{M}} d_2(p_1, p_2, \cdot)$ using (adjoint) Jacobi fields and a chain rule

[Bačák et al., 2016]

$$\gamma(t) := \frac{a\sqrt{2}}{\sin^2(t) + 1} (\cos(t), \cos(t)\sin(t), 1)^{\mathrm{T}}, \quad t \in [0, 2\pi], a = \frac{\pi}{2\sqrt{2}}.$$

Generate a sphere-valued signal by

noisy lemniscate of Bernoulli on \mathbb{S}^2 , Gaussian noise, $\sigma = \frac{\pi}{30}$, on $T_p \mathbb{S}^2$.

$$\gamma(t) := \frac{a\sqrt{2}}{\sin^2(t) + 1} \left(\cos(t), \cos(t)\sin(t), 1\right)^{\mathrm{T}}, \quad t \in [0, 2\pi], a = \frac{\pi}{2\sqrt{2}}.$$

Generate a sphere-valued signal by

$$\gamma(t) := \frac{a\sqrt{2}}{\sin^2(t) + 1} (\cos(t), \cos(t)\sin(t), 1)^{\mathrm{T}}, \quad t \in [0, 2\pi], a = \frac{\pi}{2\sqrt{2}}.$$

Generate a sphere-valued signal by

$$\gamma(t) := \frac{a\sqrt{2}}{\sin^2(t) + 1} (\cos(t), \cos(t)\sin(t), 1)^{\mathrm{T}}, \quad t \in [0, 2\pi], a = \frac{\pi}{2\sqrt{2}}.$$

Generate a sphere-valued signal by

reconstruction with TV₁ & TV₂, $\alpha = 0.16$, $\beta = 12.4$, MAE = 3.27×10^{-2} .

Draw symmetric positive definite 3×3 matrices as ellipsoids

original data

Draw symmetric positive definite 3×3 matrices as ellipsoids

lost (a lot of) data

original data

Draw symmetric positive definite 3×3 matrices as ellipsoids

original data

inpainted with $\alpha = \beta = 0.05$, MAE = 0.0929

Draw symmetric positive definite 3×3 matrices as ellipsoids

original data

inpainted with $\alpha =$ 0.1, MAE = 0.0712

4. Acceleration of Bézier Curves

Data Fitting on Manifolds

Given data points d_0, \ldots, d_n on a Riemannian manifold \mathcal{M} and time points $t_i \in I$, find a "nice" curve $\gamma \colon I \to \mathcal{M}, \gamma \in \Gamma$, such that $\gamma(t_i) = d_i$ (interpolation) or $\gamma(t_i) \approx d_i$ (approximation).

Data Fitting on Manifolds

Given data points d_0, \ldots, d_n on a Riemannian manifold \mathcal{M} and time points $t_i \in I$, find a "nice" curve $\gamma \colon I \to \mathcal{M}, \gamma \in \Gamma$, such that $\gamma(t_i) = d_i$ (interpolation) or $\gamma(t_i) \approx d_i$ (approximation).

 \cdot Γ set of geodesics & approximation: geodesic regression

[Rentmeesters, 2011; Fletcher, 2013; Boumal, Absil, 2011]

- + Γ Sobolev space of curves: Inifinite-dimensional problem $_{\mbox{[Samir et al., 2012]}}$
- $\cdot \ \Gamma$ composite Bézier curves; LSs in tangent spaces

[Arnould et al., 2015; Gousenbourger, Massart, Absil, 2018]

- Discretized curve, $\Gamma = \mathcal{M}^N$, [Boumal, Absil, 2011]

Data Fitting on Manifolds

Given data points d_0, \ldots, d_n on a Riemannian manifold \mathcal{M} and time points $t_i \in I$, find a "nice" curve $\gamma \colon I \to \mathcal{M}, \gamma \in \Gamma$, such that $\gamma(t_i) = d_i$ (interpolation) or $\gamma(t_i) \approx d_i$ (approximation).

 \cdot Γ set of geodesics & approximation: geodesic regression

[Rentmeesters, 2011; Fletcher, 2013; Boumal, Absil, 2011]

- Γ Sobolev space of curves: Inifinite-dimensional problem
- $\cdot \ \Gamma$ composite Bézier curves; LSs in tangent spaces

[Arnould et al., 2015; Gousenbourger, Massart, Absil, 2018]

- Discretized curve, $\Gamma = \mathcal{M}^N$, [Boumal, Absil, 2011]

This talk.

"nice" means minimal (discretized) acceleration ("as straight as possible") for Γ the set of composite Bézier curves.

Closed form solution for $\mathcal{M} = \mathbb{R}^d$: Natural (cubic) splines.

Definition

[Bézier, 1962]

A Bézier curve β_K of degree $K \in \mathbb{N}_0$ is a function $\beta_K \colon [0,1] \to \mathbb{R}^d$ parametrized by control points $b_0, \ldots, b_K \in \mathbb{R}^d$ and defined by

$$\beta_K(t;b_0,\ldots,b_K) \coloneqq \sum_{j=0}^K b_j B_{j,K}(t),$$

[Bernstein, 1912]

where $B_{j,K} = {K \choose j} t^j (1-t)^{K-j}$ are the Bernstein polynomials of degree K.

Evaluation via Casteljau's algorithm.

[de Casteljau, 1959]

Complete curve $\beta_3(t; b_0, b_1, b_2, b_3)$.

Composite Bézier Curves

Definition

A composite Bezier curve $B \colon [0,n] \to \mathbb{R}^d$ is defined as

$$B(t) \coloneqq \begin{cases} \beta_K(t; b_0^0, \dots, b_K^0) & \text{if } t \in [0, 1], \\ \beta_K(t - i; b_0^i, \dots, b_K^i), & \text{if } t \in (i, i + 1], \quad i = 1, \dots, n - 1. \end{cases}$$

Composite Bézier Curves

Definition

A composite Bezier curve $B \colon [0,n] \to \mathbb{R}^d$ is defined as

$$B(t) := \begin{cases} \beta_K(t; b_0^0, \dots, b_K^0) & \text{if } t \in [0, 1], \\ \beta_K(t - i; b_0^i, \dots, b_K^i), & \text{if } t \in (i, i + 1], \quad i = 1, \dots, n - 1. \end{cases}$$

Denote *i*th segment by $B_i(t) = \beta_K(t; b_0^i, \dots, b_K^i)$ and $p_i = b_0^i$.
$$b_0^0 = p_0 \qquad b_1^0 \qquad b_1^0 \qquad b_2^1 \qquad b_2^2 \circ p_1^0 \qquad b_1^2 \qquad b_2^2 \circ p_1^0 \qquad b_1^2 \qquad b_2^2 \circ p_1^0 \qquad b_1^2 \qquad b_2^2 \circ p_1^0 \qquad b_2^1 \qquad b_2^0 \qquad b_1^0 \qquad b_1^0 \qquad b_1^0 \qquad b_1^0 \qquad b_2^0 \qquad b_1^0 \qquad b_$$

Composite Bézier Curves

Definition

A composite Bezier curve $B \colon [0, n] \to \mathbb{R}^d$ is defined as

$$B(t) \coloneqq \begin{cases} \beta_K(t; b_0^0, \dots, b_K^0) & \text{if } t \in [0, 1], \\ \beta_K(t - i; b_0^i, \dots, b_K^i), & \text{if } t \in (i, i + 1], \quad i = 1, \dots, n - 1. \end{cases}$$

Denote *i*th segment by $B_i(t) = \beta_K(t; b_0^i, \dots, b_K^i)$ and $p_i = b_0^i$.

• continuous iff $B_{i-1}(1) = B_i(0), i = 1, ..., n-1$ $\Rightarrow b_K^{i-1} = b_0^i = p_i, i = 1, ..., n-1$

• continuously differentiable iff $p_i = \frac{1}{2}(b_{K-1}^{i-1} + b_1^i)$

Definition. [Park, Ravani, 1995; Popiel, Noakes, 2007] Let \mathcal{M} be a Riemannian manifold and $b_0, \ldots, b_K \in \mathcal{M}$, $K \in \mathbb{N}$.

The (generalized) Bézier curve of degree $k, k \leq K$, is defined as

$$\beta_k(t; b_0, \dots, b_k) = g(t; \beta_{k-1}(t; b_0, \dots, b_{k-1}), \beta_{k-1}(t; b_1, \dots, b_k)),$$

if k > 0, and

 $\beta_0(t;b_0)=b_0.$

Definition. Let \mathcal{M} be a Riemannian manifold and $b_0, \ldots, b_K \in \mathcal{M}$, $K \in \mathbb{N}$.

The (generalized) Bézier curve of degree $k, k \leq K$, is defined as

$$\beta_k(t; b_0, \dots, b_k) = g(t; \beta_{k-1}(t; b_0, \dots, b_{k-1}), \beta_{k-1}(t; b_1, \dots, b_k)),$$

if k > 0, and

 $\beta_0(t;b_0)=b_0.$

- Bézier curves $\beta_1(t; b_0, b_1) = g(t; b_0, b_1)$ are geodesics.
- composite Bézier curves $B : [0, n] \to \mathcal{M}$ completely analogue (using geodesics for line segments)

Definition. Let \mathcal{M} be a Riemannian manifold and $b_0, \ldots, b_K \in \mathcal{M}$, $K \in \mathbb{N}$.

The (generalized) Bézier curve of degree $k, k \leq K$, is defined as

$$\beta_k(t; b_0, \dots, b_k) = g(t; \beta_{k-1}(t; b_0, \dots, b_{k-1}), \beta_{k-1}(t; b_1, \dots, b_k)),$$

if k > 0, and

 $\beta_0(t;b_0)=b_0.$

The Riemannian composite Bezier curve B(t) is

- continuous iff $B_{i-1}(1) = B_i(0), i = 1, \dots, n-1$ $\Rightarrow b_K^{i-1} = b_0^i \rightleftharpoons p_i, i = 1, \dots, n-1$
- continuously differentiable iff $p_i = g(\frac{1}{2}; b_{K-1}^{i-1}, b_1^i)$

Definition. Let \mathcal{M} be a Riemannian manifold and $b_0, \ldots, b_K \in \mathcal{M}$, $K \in \mathbb{N}$.

The (generalized) Bézier curve of degree $k, k \leq K$, is defined as

$$\beta_k(t; b_0, \dots, b_k) = g(t; \beta_{k-1}(t; b_0, \dots, b_{k-1}), \beta_{k-1}(t; b_1, \dots, b_k)),$$

if k > 0, and

 $\beta_0(t;b_0)=b_0.$

The Riemannian composite Bezier curve B(t) is

- continuous iff $B_{i-1}(1) = B_i(0), i = 1, \dots, n-1$ $\Rightarrow b_K^{i-1} = b_0^i \rightleftharpoons p_i, i = 1, \dots, n-1$
- continuously differentiable iff $b_{K-1}^{i-1} = g(2; b_1^i, p_i)$.

Illustration of a Composite Bézier Curve on the Sphere \mathbb{S}^2

The directions, e.g. $\log_{p_j} b_j^{\rm l},$ are now tangent vectors.

A Variational Model for Data Fitting

Let $d_0, \ldots, d_n \in \mathcal{M}$. A model for data fitting reads

$$\mathcal{E}(B) = \frac{\lambda}{2} \sum_{k=0}^{n} d_{\mathcal{M}}^2(B(k), d_k) + \int_0^n \left\| \frac{D^2 B(t)}{\mathrm{d}t^2} \right\|_{B(t)}^2 \mathrm{d}t, \qquad \lambda > 0,$$

where $B \in \Gamma$ is from the set of continuously differentiable composite Bezier curve of degree K with n segments.

A Variational Model for Data Fitting

4

Let $d_0, \ldots, d_n \in \mathcal{M}$. A model for data fitting reads

$$\mathcal{E}(B) = \frac{\lambda}{2} \sum_{k=0}^{n} d_{\mathcal{M}}^2(B(k), d_k) + \int_0^n \left\| \frac{D^2 B(t)}{\mathrm{d}t^2} \right\|_{B(t)}^2 \mathrm{d}t, \qquad \lambda > 0,$$

where $B \in \Gamma$ is from the set of continuously differentiable composite Bezier curve of degree K with n segments.

- Goal: find minimizer $B^* \in \Gamma$
- finite dimensional optimization problem in the control points b_{j}^{i} , i.e. on \mathcal{M}^{L} with

•
$$L = n(K - 1) + 2$$

• $\lambda \to \infty$ yields interpolation $(p_k = d_k) \Rightarrow L = n(K - 2) + 1$

A Variational Model for Data Fitting

4

Let $d_0, \ldots, d_n \in \mathcal{M}$. A model for data fitting reads

$$\mathcal{E}(B) = \frac{\lambda}{2} \sum_{k=0}^{n} d_{\mathcal{M}}^2(B(k), d_k) + \int_0^n \left\| \frac{D^2 B(t)}{\mathrm{d}t^2} \right\|_{B(t)}^2 \mathrm{d}t, \qquad \lambda > 0,$$

where $B \in \Gamma$ is from the set of continuously differentiable composite Bezier curve of degree K with n segments.

- Goal: find minimizer $B^* \in \Gamma$
- finite dimensional optimization problem in the control points b_j^i , i.e. on \mathcal{M}^L with

•
$$L = n(K - 1) + 2$$

- $\lambda \to \infty$ yields interpolation $(p_k = d_k) \Rightarrow L = n(K 2) + 1$
- On $\mathcal{M} = \mathbb{R}^m$: closed form solution, natural (cubic) splines

We discretize the absolute second order covariant derivative

$$\int_{0}^{n} \left\| \frac{D^{2}B(t)}{\mathrm{d}t^{2}} \right\|_{\gamma(t)}^{2} \mathrm{d}t \approx \sum_{k=1}^{N-1} \frac{\Delta_{s} d_{2}^{2}[B(s_{i-1}), B(s_{i}), B(s_{i+1})]}{\Delta_{s}^{4}}$$

on equidistant points s_0, \ldots, s_N with step size $\Delta_s = s_1 - s_0$.

Evaluating $\mathcal{E}(B)$ consists of evaluation of geodesics and squared (Riemannian) distances

- $\cdot (N + 1)K$ geodesics to evaluate the Bézier segments
- $\cdot \, N$ geodesics to evaluate the mid points
- *N* squared distances to obtain the second order absolute finite differences squared

For the gradient of the discretized data fitting model

$$\mathcal{E}(B) = \frac{\lambda}{2} \sum_{k=0}^{n} d_{\mathcal{M}}^{2}(B(k), d_{k}) + \sum_{k=1}^{N-1} \frac{\Delta_{s} d_{2}^{2}[B(s_{i-1}), B(s_{i}), B(s_{i+1})]}{\Delta_{s}^{4}}.$$

we

- · identified first and last control points $p_i = b_K^{i-1} = b_0^i$
- plug in the constraint $b_{K-1}^{i-1} = g(2; b_1^i, p_i)$ \Rightarrow Introduces a further chain rule for the differential \Rightarrow reduces the number of optimization variables.
- concatenation of adjoint Jacobi fields (evaluated at the points s_i) yields the gradient $\nabla_{\mathcal{N}} \mathcal{E}$.

Let $\mathcal{N}=\mathcal{M}^L$ be the product manifold of \mathcal{M} ,

Input.

- $\cdot \ \mathcal{E} \colon \mathcal{N} o \mathbb{R}$,
- · its gradient $\nabla_{\mathcal{N}} \mathcal{E}$,
- initial data $q^{(0)} = b \in \mathcal{N}$
- step sizes $s_k > 0, k \in \mathbb{N}$.

Output: $\hat{q} \in \mathcal{N}$

 $k \leftarrow 0$

repeat

$$q^{(k+1)} \leftarrow \exp_{q^{(k)}} \left(-s_k \nabla_{\mathcal{N}} \mathcal{E}(q^{(k)}) \right)$$

$$k \leftarrow k+1$$

until a stopping criterion is reached **return** $\hat{q} \coloneqq q^{(k)}$
Let $q = q^{(k)}$ be an iterate from the gradient descent algorithm, $\beta, \sigma \in (0, 1), \alpha > 0.$

Let m be the smallest positive integer such that

$$\mathcal{E}(q) - \mathcal{E}\left(\exp_q(-\beta^m \alpha \nabla_{\mathcal{N}} \mathcal{E}(q))\right) \ge \sigma \beta^m \alpha \|\nabla_{\mathcal{N}} \mathcal{E}(q)\|_q$$

holds. Set the step size $s_k \coloneqq \beta^m \alpha$.

Minimizing with Known Minimizer

32

Minimizing with Known Minimizer

32

Interpolation by Bézier Curves with Minimal Acceleration.

A comp. Bezier curve (black) and its mnimizer (blue).

Approximation by Bézier Curves with Minimal Acceleration.

The initial setting, $\lambda = 10$.

Approximation by Bézier Curves with Minimal Acceleration.

Summary of reducing λ from 10 (violet) to zero (yellow).

34

Comparison to Previous Approach

35

This curve (dashed) is "too global" to be solved in a tangent space (dotted) correctly, while our method (blue) still works.

An Example of Rotations $\mathcal{M} = \mathrm{SO}(3)$

Initialization with approach from composite splines

Our method outperforms the approach of solving linear systems in tangent spaces, but their approach can serve as an initialization.

Models in manifold-valued imaging.

- Infimal Convolution [Bergmann, Fitschen, et al., 2017; Bergmann, Fitschen, et al., 2018]
- TGV [Bergmann, Fitschen, et al., 2018; Bredies et al., 2018]
- Nonlocal TV using the Graph Laplacian [Bergmann, Tenbrinck, 2018]
- denoising using second order statistics

[Laus et al., 2017]

Algorithms In manifold-valued imaging.

• Douglas-Rachford splitting on Hadamard manifolds

[Bergmann, Persch, Steidl, 2016]

 Half-quadratic Minimization (iteratively reweighted least squares)
[Bergmann, Chan, et al., 2016; Grohs, Sprecher, 2016] We defined second order differences on Riemannian manifolds.

Two variational models: second order total variation and minimizing the acceleration of a Bézier curve.

We further presented two algorithms to minimize the corresponding Variational Models: Cyclic Proximal Point Algorithm (for nonsmooth) and Gradient Descent (for smooth) to minimize the model.

- further models (Bézier surfaces, manifolds with no closed form for Jacobi fields,...)
- further algorithms, e.g. for constraint optimization
- further manifolds, e.g. infinite dimensional ones

Implement Algorithms in Manopt.jl an upcoming manifold optimization toolbox for Julia paradigm:

Being able to use an(y) algorithm for a(ny) model directly on a(ny) manifold efficiently.

...in an open source programming language.

Selected References on Total Variation

日 Bačák, M.; Bergmann, R.; Steidl, G.; Weinmann, A. (2016). "A Second Order Non-Smooth Variational Model for Restoring Manifold-Valued Images". SIAM Journal on Scientific Computing 38.1, A567-A597. DOI: 10.1137/15M101988X. = Bergmann, R.; Fitschen, J. H.; Persch, J.; Steidl, G. (2018). "Priors with Coupled First and Second Order Differences for Manifold-Valued Image Processing". Journal of Mathematical Imaging and Vision 60.9, pp. 1459–1481. DOI: 10.1007/s10851-018-0840-v. Ξ Bergmann, R.; Tenbrinck, D. (2018). "A graph framework for manifold-valued data". SIAM Journal on Imaging Sciences 11.1, pp. 325–360. DOI: 10.1137/17M1118567. 曰 Laus, F.; Nikolova, M.; Persch, J.; Steidl, G. (2017). "A Nonlocal Denoising Algorithm for Manifold-Valued Images Using Second Order Statistics". SIAM Journal on Imaging Sciences 10.1, pp. 416-448. DOI: 10.1137/16M1087114. = Lellmann, J.; Strekalovskiy, E.; Koetter, S.; Cremers, D. (2013). "Total variation regularization for functions with values in a manifold". IEEE ICCV 2013, pp. 2944–2951. DOI: 10, 1109/ICCV, 2013, 366. Weinmann, A.; Demaret, L.; Storath, M. (2014). "Total variation regularization for manifold-valued data". SIAM Journal on Imaging Sciences 7.4, pp. 2226–2257. DOI: 10.1137/130951075.

Selected References on Bézier Curves

- Arnould, A.; Gousenbourger, P.-Y.; Samir, C.; Absil, P.-A.; Canis, M. (2015). "Fitting Smooth Paths on Riemannian Manifolds : Endometrial Surface Reconstruction and Preoperative MRI-Based Navigation". GSI2015. Ed. by F.Nielsen; F.Barbaresco. Springer International Publishing, pp. 491–498. DOI: 10.1007/978-3-319-25040-3_53.
 - Bergmann, R.; Gousenbourger, P.-Y. (2018). "A variational model for data fitting on manifolds by minimizing the acceleration of a Bézier curve". Frontiers in Applied Mathematics and Statistics. DOI: 10.3389/fams.2018.00059. arXiv: 1807.10090.
- Boumal, N.; Absil, P. A. (2011). "A discrete regression method on manifolds and its application to data on SO(n)". *IFAC Proceedings Volumes (IFAC-PapersOnline)*. Vol. 18. PART 1, pp. 2284–2289. DOI: 10.3182/20110828-6-IT-1002.00542.
- ∃

Ξ

Gousenbourger, P.-Y.; Massart, E.; Absil, P.-A. (2018). "Data fitting on manifolds with composite Bézier-like curves and blended cubic splines". *Journal of Mathematical Imaging and Vision*. accepted. DOI: 10.1007/s10851-018-0865-2.

Samir, C.; Absil, P.-A.; Srivastava, A.; Klassen, E. (2012). "A Gradient-Descent Method for Curve Fitting on Riemannian Manifolds". *Foundations of Computational Mathematics* 12.1, pp. 49–73. DOI: 10.1007/s10208-011-9091-7.

🖹 ronnybergmann.net/talks/2019-Goettingen-Kolloquium-SecondOrder.pdf 👘 41