
A Variational Model for Data Fitting on Manifolds
by Minimizing the Acceleration of a Bézier Curve

Ronny Bergmanna, Pierre-Yves Gousenbourgerb
aTechnische Universität Chemnitz, Chemnitz, Germany
bUniversité catholique de Louvain, Louvain-la-Neuve, Belgium.

Minisymposium MS FT-1-SG 4: Manifold Sensing and Sparse Recovery,
International Congress on Industrial and Applied Mathematics,
Valencia, Spain,

July 16, 2019.



Data Fitting on Manifolds

Given data points d0, . . . , dn on a Riemannian manifoldM and
time points ti ∈ I , find a “nice” curve γ : I →M, γ ∈ Γ, such
that γ(ti) = di (interpolation) or γ(ti) ≈ di (approximation).

• Γ set of geodesics & approximation: geodesic regression
[Rentmeesters, 2011; Fletcher, 2013; Boumal, Absil, 2011]

• Γ Sobolev space of curves: Inifinite-dimensional problem
[Samir et al., 2012]

• Γ composite Bézier curves; LSs in tangent spaces
[Arnould et al., 2015; Gousenbourger, Massart, Absil, 2018]

• Discretized curve, Γ =MN , [Boumal, Absil, 2011]

This talk.
“nice” means minimal (discretized) acceleration (“as straight as
possible”) for Γ the set of composite Bézier curves.

Closed form solution forM = Rd: Natural (cubic) splines.
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A d-dimensional Riemannian ManifoldM

g(·; p, q)p q

expp
logp

X
logp p

TpM

M

A d-dimensional Riemannian manifold can be informally
defined as a setM covered with a ‘suitable’ collection of

charts, that identify subsets ofM with open subsets of Rd and
a continuously varying inner product on the tangential spaces.

[Absil, Mahony, Sepulchre, 2008]

Geodesic g(·; p, q) shortest path (onM) between p, q ∈M
Tangent space TpM at p, with inner product (·, ·)p
Logarithmic map logp q = ġ(0; p, q) “speed towards q”
Exponential map exppX= g(1), where g(0) = p, ġ(0) = X
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Variational Methods on Manifolds

Variational methods model a trade-off between staying close
to the data and minimizing a certain property

E(p) = D(p; f) + αR(p), p ∈M

• α > 0 is a weight
• M is a Riemannian manifold
• given (input) data f ∈M
• data or similarity term D(p; f)

• regularizer / prior R(p)

• E is smooth, but high-dimensional,M = Nm, m ∈ N
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(Euclidean) Bézier Curves

[Bézier, 1962]Definition
A Bézier curve βK of degree K ∈ N0 is a function
βK : [0, 1]→ Rd parametrized by control points b0, . . . , bK ∈ Rd

and defined by

βK(t; b0, . . . , bK) :=

K∑
j=0

bjBj,K(t),

[Bernstein, 1912]

where Bj,K =
(
K
j

)
tj(1− t)K−j are the Bernstein polynomials of

degree K .

Evaluation via Casteljau’s algorithm. [de Casteljau, 1959]
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Illustration of de Casteljau’s Algorithm

b0

b1

b2

b3
The set of control points b0, b1, b2, b3.
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Illustration of de Casteljau’s Algorithm

b0
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b3
Complete curve β3(t; b0, b1, b2, b3).
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Composite Bézier Curves

Definition
A composite Bezier curve B : [0, n]→ Rd is defined as

B(t) :=

βK(t; b00, . . . , b
0
K) if t ∈ [0, 1],

βK(t− i; bi0, . . . , b
i
K), if t ∈ (i, i+ 1], i = 1, . . . , n− 1.

Denote ith segment by Bi(t) = βK(t; bi0, . . . , b
i
K) and pi = bi0.

B0 B1 B2 B3 B4

t|
0

|
1

|
2

|
3

|
4

|
5

b00 = p0

b01

b02

p1
b11

b12

p2 b21

b22 p3

b31

b32

p4

b41

b42

p5 = b43

The composite Bezier curve B(t) is

• continuous iff Bi−1(1) = Bi(0), i = 1, . . . , n− 1
⇒ bi−1

K = bi0 = pi, i = 1, . . . , n− 1
• continuously differentiable iff pi = 1

2(b
i−1
K−1 + bi1)
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Bézier Curves on a Manifold

[Park, Ravani, 1995; Popiel, Noakes, 2007]Definition.
LetM be a Riemannian manifold and b0, . . . , bK ∈M, K ∈ N.

The (generalized) Bézier curve of degree k, k ≤ K , is defined as

βk(t; b0, . . . , bk) = g(t;βk−1(t; b0, . . . , bk−1), βk−1(t; b1, . . . , bk)),

if k > 0, and

β0(t; b0) = b0.

• Bézier curves β1(t; b0, b1) = g(t; b0, b1) are geodesics.
• composite Bézier curves B : [0, n]→M completely
analogue (using geodesics for line segments)

The Riemannian composite Bezier curve B(t) is

• continuous iff Bi−1(1) = Bi(0), i = 1, . . . , n− 1
⇒ bi−1

K = bi0 =: pi, i = 1, . . . , n− 1
• continuously differentiable iff
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Illustration of a Composite Bézier Curve on the Sphere S2

The directions, e.g. logpj b
1
j , are now tangent vectors. 8



A Variational Model for Data Fitting

Let d0, . . . , dn ∈M. A model for data fitting reads

E(B) =
λ

2

n∑
k=0

d2M(B(k), dk) +

∫ n

0

∥∥∥D2B(t)

dt2

∥∥∥2
B(t)

dt, λ > 0,

where B ∈ Γ is from the set of continuously differentiable
composite Bezier curve of degree K with n segments.

• Goal: find minimizer B∗ ∈ Γ

• finite dimensional optimization problem
in the control points bij , i.e. onML with

• L = n(K − 1) + 2
• λ→∞ yields interpolation (pk = dk)⇒ L = n(K − 2) + 1
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Second Order Differences on Manifolds

Second order difference: [RB et al., 2014; RB, Weinmann, 2016; Bačák et al., 2016]

d2(x, y, z) := min
c∈Cx,z

dM(c, y), x, y, z ∈M,

Cx,z mid point(s) of geodesic(s) g(·;x, z)
1
2∥x− 2y+ z∥2 = ∥ 12(x+ z)− y∥2

x

y

z

c(x, z)

min
c∈Cx,z

dM(c, y)

x

y

zc(x, z)

c′

M = S2
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Discretizing the Data Fitting Model

We discretize the absolute second order covariant derivative∫ n

0

∥∥∥D2B(t)

dt2

∥∥∥2
γ(t)

dt ≈
N−1∑
k=1

∆sd
2
2[B(si−1), B(si), B(si+1)]

∆4
s

.

on equidistant points s0, . . . , sN with step size ∆s = s1 − s0.

Evaluating E(B) consists of evaluation of geodesics and
squared (Riemannian) distances

• (N + 1)K geodesics to evaluate the Bézier segments
• N geodesics to evaluate the mid points c
• N squared distances to obtain the second order absolute
finite differences squared

11



Gradient of the Discretized Data Fitting Model

For the gradient of the discretized data fitting model

E(B) =
λ

2

n∑
k=0

d2M(B(k), dk) +

N−1∑
k=1

∆sd
2
2[B(si−1), B(si), B(si+1)]

∆4
s

.

we

• identified first and last control points pi = bi−1
K = bi0

• plug in the constraint bi−1
K−1 = g(2; bi1, pi)

⇒ Introduces a further chain rule for the differential
⇒ reduces the number of optimization variables.

• concatenation of adjoint Jacobi fields (evaluated at the
points si) yields the gradient ∇NE .
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The Differential of a Geodesic w.r.t. its Start Point

The geodesic variation

Γg,ξ(s, t) := expγx,ξ(s)(tζ(s)), s ∈ (−ε, ε), t ∈ [0, 1], ε > 0.

is used to define the Jacobi field Jg,ξ(t) =
∂
∂sΓg,ξ(s, t)|s=0.

ξ = Jg,ξ(0)

Jg,ξ(t)

Jg,ξ

g(·;x, y)

ζ(0)
ζ(ŝ)

x

y

Γg,ξ(ŝ, 0)

Γg,ξ(s, 0) = γx,ξ(s)

Γg,ξ(s, t)

g(t;x, y)

Then the differential reads Dxg(t; ·, y)[ξ] = Jg,ξ(t). 13



Implementing Jacobi Fields

• On symmetric manifolds, the Jacobi field can be evaluated
in closed form, since the PDE decouples into ODEs.

• The adjoint Jacobi fields J∗
g,η(t) are characterized by

⟨Jg,ξ(t), η⟩g(t) = ⟨ξ, J∗
g,η(t)⟩x, for all ξ ∈ TxM, η ∈ Tg(t;x,y)M

can be computed without extra efforts, i.e. the same ODEs
occur.

⇒ adjoint Jacobi fields can be used to calculate the gradient
• Gradient of iterated evaluations of geodesics can be
computed by composition of (adjoint) Jacobi fields
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Gradient Descent on a Manifold

Let N =ML be the product manifold ofM,

Input.
• E : N → R,
• its gradient ∇NE ,
• initial data q(0) = b ∈ N
• step sizes sk > 0, k ∈ N.

Output: q̂ ∈ N
k ← 0
repeat
q(k+1) ← expq(k)

(
−sk∇NE(q(k))

)
k ← k + 1

until a stopping criterion is reached
return q̂ := q(k)

15



Armijo Step Size Rule

Let q = q(k) be an iterate from the gradient descent algorithm,
β, σ ∈ (0, 1), α > 0.

Let m be the smallest positive integer such that

E(q)− E
(
expq(−βmα∇NE(q))

)
≥ σβmα∥∇NE(q)∥q

holds. Set the step size sk := βmα.

16



Minimizing with Known Minimizer

Original

Minimized

0 1
2

1 3
2

2

3 · 10−2

9 · 10−2 Absolute first order differences ∥logB(ti) B(ti+1)∥B(ti)
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Interpolation by Bézier Curves with Minimal Acceleration.

A comp. Bezier curve (black) and its mnimizer (blue).
18



Approximation by Bézier Curves with Minimal Acceleration.

In the following video λ is slowly decreased from 10 to 0.

The initial setting, λ = 10.
19



Approximation by Bézier Curves with Minimal Acceleration.

In the following video λ is slowly decreased from 10 to 0.

Summary of reducing λ from 10 (violet) to zero (yellow).
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Comparison to Previous Approach [Gousenbourger, Massart, Absil, 2018]

This curve (dashed) is “too global” to be solved in a tangent
space (dotted) correctly, while our method (blue) still works. 20



An Example of RotationsM = SO(3)

Initialization with approach from composite splines
[Gousenbourger, Massart, Absil, 2018]

Our method outperforms the approach of solving linear
systems in tangent spaces, but their approach can serve as an
initialization.
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Summary

We investigated a model to minimize the acceleration of a
Bézier curve

• using second order differences
• employing Jacobi fields
• using a gradient descent w.r.t. the control points

The algorithm will be published in Manopt.jl a Julia Package
available at http://manoptjl.org. Goal:

Being able to use an(y) algorithm for a(ny) model directly on
a(ny) manifold easily and efficiently.

in an open source programming language.

Example
xOpt = steepestDescent(N, F,∇F, x0)

22

http://manoptjl.org
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