## Fenchel Duality Theory and a Primal-Dual Algorithm on Riemannian Manifolds

Ronny Bergmann ${ }^{\text {a }}$, Roland Herzog ${ }^{\text {a }}$, José Vidal-Núñeza, Daniel Tenbrinck ${ }^{\text {b }}$
${ }^{\text {a }}$ Technische Universität Chemnitz, Chemnitz, Germany
${ }^{\mathrm{b}}$ Friedrich-Alexander-Universität, Erlangen, Germany.
Optimization and Numerical Analysis Seminar School of Mathematics, University of Birmingham.

Birmingham, February 26, 2020.

## Contents

1. Introduction
2. Fenchel Duality
3. The Chambolle-Pock Algorithm
4. Numerical Examples
5. Summary \& Conclusion

## 1. Introduction

## Manifold-Valued Signals and Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

phase-valued data, $\mathcal{M}=\mathbb{S}^{1}$


## Manifold-Valued Signals and Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)



## Manifold-Valued Signals and Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)


National elevation dataset
[Gesch et al., 2009]
directional data, $\mathcal{M}=\mathbb{S}^{2}$

## Manifold-Valued Signals and Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered

diffusion tensors in human brain from the Camino dataset http://cmic.cs.ucl.ac.uk/camino
sym. pos. def. matrices, $\mathcal{M}=\operatorname{SPD}(3)$ diffraction (EBSD)


## Manifold-Valued Signals and Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

horizontal slice \#28
from the Camino dataset
http://cmic.cs.ucl.ac.uk/camino
sym. pos. def. matrices, $\mathcal{M}=\operatorname{SPD}(3)$


## Manifold-Valued Signals and Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)


EBSD example from the MTEX toolbox
[Bachmann, Hielscher, since 2005]
Rotations (mod. symmetry),

$$
\mathcal{M}=\mathrm{SO}(3)(/ \mathcal{S})
$$

## Manifold-Valued Signals and Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)


## Common properties

- Range of values is a Riemannian manifold
- Tasks from "classical" image processing, e.g.
- denoising
- inpainting
- interpolation
- Labeling
- deblurring


## A $d$-dimensional Riemannian Manifold $\mathcal{M}$



A $d$-dimensional Riemannian manifold can be informally defined as a set $\mathcal{M}$ covered with a 'suitable' collection of charts, that identify subsets of $\mathcal{M}$ with open subsets of $\mathbb{R}^{d}$ and a continuously varying inner product on the tangential spaces.
[Absil, Mahony, Sepulchre, 2008]

## A $d$-dimensional Riemannian Manifold $\mathcal{M}$



Geodesic $g(\cdot ; p, q)$ shortest path (on $\mathcal{M}$ ) between $p, q \in \mathcal{M}$ Tangent space $\mathrm{T}_{p} \mathcal{M}$ at $p$, with inner product $(\cdot, \cdot)_{p}$
Logarithmic map $\log _{p} q=\dot{g}(0 ; p, q)$ "speed towards $q$ " Exponential map $\exp _{p} X=g(1)$, where $g(0)=p, \dot{g}(0)=X$ Parallel transport $\mathrm{PT}_{p \rightarrow q}(Y)$ of $Y \in \mathrm{~T}_{p} \mathcal{M}$ along $g(\cdot ; p, q)$

## The Model

We consider the minimization problem

$$
\underset{p \in \mathcal{C}}{\arg \min } F(p)+G(\Lambda(p))
$$

- $\mathcal{M}, \mathcal{N}$ are (high-dimensional) Riemannian Manifolds
- $F: \mathcal{M} \rightarrow \overline{\mathbb{R}}$ (locally) convex, nonsmooth
- $G: \mathcal{N} \rightarrow \overline{\mathbb{R}}$ (locally) convex, nonsmooth
- $\Lambda: \mathcal{M} \rightarrow \mathcal{N}$ nonlinear
- $\mathcal{C} \subset \mathcal{M}$ strongly geodesically convex.


## Splitting Methods \& Algorithms

On a Riemannian manifold $\mathcal{M}$ we have

- Cyclic Proximal Point Algorithm (CPPA)
- (parallel) Douglas-Rachford Algorithm (PDRA)

On $\mathbb{R}^{n}$ PDRA is known to be equivalent to
[Setzer, 2011; O'Connor, Vandenberghe, 2018]

- Primal-Dual Hybrid Gradient Algorithm (PDHGA)
[Esser, Zhang, Chan, 2010]
- Chambolle-Pock Algorithm (CPA) [chambolle, Pock, 2011; Pock et al, 2009]

Goals of this talk.
Formulate Duality on a Manifold
Derive a Riemannian Chambolle-Pock Algorithm (RCPA)

## Musical Isomorphisms

[Lee, 2003]
The dual space $\mathcal{T}_{p}^{*} \mathcal{M}$ of a tangent space $\mathcal{T}_{p} \mathcal{M}$ is called cotangent space. We denote by $\langle\cdot, \cdot\rangle$ the duality pairing.

We define the musical isomorphisms

$$
\begin{aligned}
\cdot b: \mathcal{T}_{p} \mathcal{M} \ni X \mapsto X^{b} \in \mathcal{T}_{p}^{*} \mathcal{M} \text { via }\left\langle X^{b}, Y\right\rangle= & (X, Y)_{p} \\
& \text { for all } Y \in \mathcal{T}_{p} \mathcal{M}
\end{aligned}
$$

$\cdot \sharp: \mathcal{T}_{p}^{*} \mathcal{M} \ni \xi \mapsto \xi^{\sharp} \in \mathcal{T}_{p} \mathcal{M} \operatorname{via}\left(\xi^{\sharp}, Y\right)_{p}=\langle\xi, Y\rangle$

$$
\text { for all } Y \in \mathcal{T}_{p} \mathcal{M}
$$

$\Rightarrow$ inner product and parallel transport on/between $\mathcal{T}_{p}^{*} \mathcal{M}$

## Convexity

[Sakai, 1996; Udrişte, 1994]
A set $\mathcal{C} \subset \mathcal{M}$ is called (strongly geodesically) convex if for all $p, q \in \mathcal{C}$ the geodesic $g(\cdot ; p, q)$ is unique and lies in $\mathcal{C}$.

A function $F: \mathcal{C} \rightarrow \overline{\mathbb{R}}$ is called convex if for all $p, q \in \mathcal{C}$ the composition $F(g(t ; p, q)), t \in[0,1]$, is convex.

## The Subdifferential

[Lee, 2003; Udrişte, 1994]
The subdifferential of $F$ at $p \in \mathcal{C}$ is given by

$$
\partial_{\mathcal{M}} F(p):=\left\{\xi \in \mathcal{T}_{p}^{*} \mathcal{M} \mid F(q) \geq F(p)+\left\langle\xi, \log _{p} q\right\rangle \text { for } q \in \mathcal{C}\right\}
$$

where

- $\mathcal{T}_{p}^{*} \mathcal{M}$ is the dual space of $\mathcal{T}_{p} \mathcal{M}$,
- $\langle\cdot, \cdot\rangle$ denotes the duality pairing on $\mathcal{T}_{p}^{*} \mathcal{M} \times \mathcal{T}_{p} \mathcal{M}$


## 2. Fenchel Duality

## The Euclidean Fenchel Conjugate

Let $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be proper and convex.
We define the Fenchel conjugate $f^{*}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ of $f$ by

$$
f^{*}(\xi):=\sup _{x \in \mathbb{R}^{n}}\langle\xi, x\rangle-f(x)=\sup _{x \in \mathbb{R}^{n}}\binom{\xi}{-1}^{\mathrm{T}}\binom{x}{f(x)}
$$

- interpretation: maximize the distance of $\xi^{\mathrm{T}} x$ to $f$
$\Rightarrow$ extremum seeking problem on the epigraph
The Fenchel biconjugate reads

$$
f^{* *}(x)=\left(f^{*}\right)^{*}(x)=\sup _{\xi \in \mathbb{R}^{n}}\left\{\langle\xi, x\rangle-f^{*}(\xi)\right\}
$$

## Illustration of the Fenchel Conjugate

The function $f$


The Fenchel conjugate $f^{*}$


## Properties of the Fenchel Conjugate

- The Fenchel conjugate $f^{*}$ is convex (even if $f$ is not)
- If $f(x) \leq g(x)$ holds for all $x \in \mathbb{R}^{n}$
then $f^{*}(\xi) \geq g^{*}(\xi)$ holds for all $\xi \in \mathbb{R}^{n}$
- If $g(x)=f(x+b)$ for some $b \in \mathbb{R}$ holds for all $x \in \mathbb{R}^{n}$ then $g^{*}(\xi)=f^{*}(\xi)-\xi^{\mathrm{T}} b$ holds for all $\xi \in \mathbb{R}^{n}$
- If $g(x)=\lambda f(x)$, for some $\lambda>0$, holds for all $x \in \mathbb{R}^{n}$ then $g^{*}(\xi)=\lambda f^{*}(\xi / \lambda)$ holds for all $\xi \in \mathbb{R}^{n}$
- $f^{* *}$ is the largest convex, lsc function with $f^{* *} \leq f$
- especially the Fenchel-Moreau theorem: $f$ convex, proper, Isc $\Rightarrow f^{* *}=f$.


## Properties of the Fenchel Conjugate II

The Fenchel-Young inequality holds, i.e.,

$$
f(x)+f^{*}(\xi) \geq \xi^{\mathrm{T}} x \quad \text { for all } \quad x, \xi \in \mathbb{R}^{n}
$$

We can characterize subdifferentials

- For a proper, convex function $f$

$$
\xi \in \partial f(x) \Leftrightarrow f(x)+f^{*}(\xi)=\xi^{\mathrm{T}} x
$$

- For a proper, convex, Isc function $f$, then

$$
\xi \in \partial f(x) \Leftrightarrow x \in \partial f^{*}(\xi)
$$

## The Riemannian $m$-Fenchel Conjugate

[Bergmann, Herzog, et al., 2019] alternative approach: [Ahmadi Kakavandi, Amini, 2010]
Idea: Introduce a point on $\mathcal{M}$ to "act as" 0 .
Let $m \in \mathcal{C} \subset \mathcal{M}$ be given and $F: \mathcal{C} \rightarrow \overline{\mathbb{R}}$.
The $m$-Fenchel conjugate $F_{m}^{*}: \mathcal{T}_{m}^{*} \mathcal{M} \rightarrow \overline{\mathbb{R}}$ is defined by

$$
F_{m}^{*}\left(\xi_{m}\right):=\sup _{X \in \mathcal{L}_{\mathcal{L}, m}}\left\{\left\langle\xi_{m}, X\right\rangle-F\left(\exp _{m} X\right)\right\}
$$

where
$\mathcal{L}_{\mathcal{C}, m}:=\left\{X \in \mathcal{T}_{m} \mathcal{M} \mid q=\exp _{m} X \in \mathcal{C}\right.$ and $\left.\|X\|_{p}=d(q, p)\right\}$.
Let $m^{\prime} \in \mathcal{C}$.
The $m m^{\prime}$-Fenchel-biconjugate $F_{m m^{\prime}}^{* *}: \mathcal{C} \rightarrow \overline{\mathbb{R}}$ is given by

$$
F_{m m^{\prime}}^{* *}(p)=\sup _{\xi_{m^{\prime}} \in \mathcal{T}_{m^{\prime}}^{*} \mathcal{M}}\left\{\left\langle\xi_{m^{\prime}}, \log _{m^{\prime}} p\right\rangle-F_{m}^{*}\left(\mathcal{P}_{m^{\prime} \rightarrow m} \xi_{m^{\prime}}\right)\right\} .
$$

## Properties of the $m$-Fenchel Conjugate

- $F_{m}^{*}$ is convex on $\mathcal{T}_{m}^{*} \mathcal{M}$
- If $F(p) \leq G(p)$ holds for all $p \in \mathcal{C}$ then $F_{m}^{*}(\xi) \geq G_{m}^{*}\left(\xi_{m}\right)$ holds for all $\xi_{m} \in \mathcal{T}_{m}^{*} \mathcal{M}$
- If $G(x)=F(x)+a$ for some $a \in \mathbb{R}$ holds for all $p \in \mathcal{C}$ then $G_{m}^{*}\left(\xi_{m}\right)=F_{m}^{*}\left(\xi_{m}\right)-a$ holds for all $\xi_{m} \in \mathcal{T}_{m}^{*} \mathcal{M}$
- If $G(p)=\lambda F(p)$, for some $\lambda>0$, holds for all $p \in \mathcal{C}$ then $G_{m}^{*}\left(\xi_{m}\right)=\lambda F_{m}^{*}\left(\xi_{m} / \lambda\right)$ holds for all $\xi_{m} \in \mathcal{T}_{m}^{*} \mathcal{M}$
- It holds $F_{m m}^{* *} \leq F$ on $\mathcal{C}$
- especially the Fenchel-Moreau theorem: If $F$ convex, proper, Isc then $F_{m m}^{* *}=F$ on $\mathcal{C}$.


## Properties of the $m$-Fenchel Conjugate II

The Fenchel-Young inequality holds, i.e.,

$$
F(p)+F_{m}^{*}\left(\xi_{m}\right) \geq\left\langle\xi_{m}, \log _{m} p\right\rangle \quad \text { for all } \quad p \in \mathcal{C}, \xi_{m} \in \mathcal{T}_{m}^{*} \mathcal{M}
$$

We can characterize subdifferentials

- For a proper, convex function $F$

$$
\xi_{p} \in \partial_{\mathcal{M}} F(p) \Leftrightarrow F(p)+F_{m}^{*}\left(\mathcal{P}_{p \rightarrow m} \xi_{p}\right)=\left\langle\mathcal{P}_{p \rightarrow m} \xi_{p}, \log _{m} p\right\rangle .
$$

- For a proper, convex, Isc function $F$

$$
\xi_{p} \in \partial_{\mathcal{M}} F(p) \Leftrightarrow \log _{m} p \in \partial F_{m}^{*}\left(\mathcal{P}_{p \rightarrow m} \xi_{p}\right)
$$

## 3. The Chambolle-Pock Algorithm

## The Euclidean Chambolle-Pock Algorithm

From the pair of primal-dual problems

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} f(x)+g(K x), \quad K \text { linear, } \\
& \max _{\xi \in \mathbb{R}^{m}}-f^{*}\left(-K^{*} \xi\right)-g^{*}(\xi)
\end{aligned}
$$

we obtain for $f, g$ proper convex, Isc the optimality conditions (OC) for a solution $(\hat{x}, \hat{\xi})$ as

$$
\begin{gathered}
\partial f \quad \ni-K^{*} \hat{\xi} \\
\partial g^{*}(\hat{\xi}) \ni K \hat{x}
\end{gathered}
$$

## The Euclidean Chambolle-Pock Algorithm

From the pair of primal-dual problems

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} f(x)+g(K x), \quad K \text { linear, } \\
& \max _{\xi \in \mathbb{R}^{m}}-f^{*}\left(-K^{*} \xi\right)-g^{*}(\xi)
\end{aligned}
$$

we obtain for $f, g$ proper convex, Isc the

Chambolle-Pock Algorithm. with $\sigma>0, \tau>0, \theta \in \mathbb{R}$

$$
\begin{aligned}
x^{(k+1)} & =\operatorname{prox}_{\sigma f}\left(x^{(k)}-\sigma K^{*} \bar{\xi}^{(k)}\right) \\
\xi^{(k+1)} & =\operatorname{prox}_{\tau g^{*}}\left(\xi^{(k)}+\tau K x^{(k+1)}\right) \\
\bar{\xi}^{(k+1)} & =\xi^{(k+1)}+\theta\left(\xi^{(k+1)}-\xi^{(k)}\right)
\end{aligned}
$$

## Proximal Map

For $F: \mathcal{M} \rightarrow \overline{\mathbb{R}}$ and $\lambda>0$ we define the Proximal Map as
[Moreau, 1965; Rockafellar, 1976; Ferreira, Oliveira, 2002]

$$
\operatorname{prox}_{\lambda F}(p):=\underset{u \in \mathcal{M}}{\arg \min } d(u, p)^{2}+\lambda F(u)
$$

! For a Minimizer $u^{*}$ of $F$ we have $\operatorname{prox}_{\lambda F}\left(u^{*}\right)=u^{*}$.

- For $F$ proper, convex, Isc:
- the proximal map is unique.
- PPA $x_{k}=\operatorname{prox}_{\lambda F}\left(x_{k-1}\right)$ converges to $\arg \min F$
- $q=\operatorname{prox}_{\lambda F}(p)$ is equivalent to

$$
\frac{1}{\lambda}\left(\log _{q} p\right)^{b} \in \partial_{\mathcal{M}} F(q)
$$

## Saddle Point Formulation

From

$$
\min _{p \in \mathcal{C}} F(p)+G(\Lambda(p))
$$

we derive the saddle point formulation for the $n$-Fenchel conjugate of $G$ as

$$
\min _{p \in \mathcal{C}} \max _{\xi_{n} \in \mathcal{T}_{n}^{*} \mathcal{N}}\left\langle\xi_{n}, \log _{n} \Lambda(p)\right\rangle+F(p)-G_{n}^{*}\left(\xi_{n}\right)
$$

For Optimality Conditions and the Dual Prolem: What's $\Lambda^{*}$ ?
Approach. Linearization:

$$
\Lambda(p) \approx \exp _{\Lambda(m)} D \Lambda(m)\left[\log _{m} p\right]
$$

## Optimality Conditions for the Saddle Point Problem

The first order opimality conditions for a saddle point of the exact saddle point problem

$$
\left(\widehat{p}, \widehat{\xi}_{n}\right) \in \mathcal{C} \times \mathcal{T}_{n}^{*} \mathcal{N}
$$

can be formally derived as

$$
\begin{aligned}
\mathcal{P}_{m \rightarrow \widehat{p}}-(D \Lambda)^{*}\left[\widehat{\xi}_{n}\right] & \in \partial_{\mathcal{M}} F(\widehat{p}) \\
\log _{n} \Lambda(\hat{p}) & \in \partial G_{n}^{*}\left(\widehat{\xi}_{n}\right)
\end{aligned}
$$

Advantage. By only linearizing for the adjoint, we stay closer to the original problem.

## Linearization \& the Dual Problem

Linearizing the primal problem obtain e.g. for $n=\Lambda(m)$

## Primal Problem.

$$
\min _{p \in \mathcal{C}} F(p)+G\left(\exp _{\Lambda(m)} D \Lambda(m)\left[\log _{m} p\right]\right)
$$

## Saddle Point Problem.

$$
\min _{p \in \mathcal{C}} \max _{\xi_{n} \in \mathcal{T}_{n}^{*} \mathcal{N}}\left\langle D \Lambda(m)^{*}\left[\xi_{n}\right], \log _{m} p\right\rangle+F(p)-G_{n}^{*}\left(\xi_{n}\right) .
$$

## Dual Problem.

$$
\max _{\xi_{n} \in \mathcal{T}_{n^{*}} \mathcal{N}}-F_{m}^{*}\left(-D \Lambda(m)^{*}\left[\xi_{n}\right]\right)-G_{n}^{*}\left(\xi_{n}\right) .
$$

and a classical duality theory including weak duality.

## Optimality Conditions for the Saddle Point Problem

The first order optimality conditions for a saddle point of the linearized problem

$$
\left(\widehat{p}, \widehat{\xi}_{n}\right) \in \mathcal{C} \times \mathcal{T}_{n}^{*} \mathcal{N}
$$

can be formally derived as

$$
\begin{aligned}
\mathcal{P}_{m \rightarrow \widehat{p}}-(D \Lambda)^{*}\left[\widehat{\xi}_{n}\right] & \in \partial_{\mathcal{M}} F(\widehat{p}) \\
D \Lambda(m)\left[\log _{m} \hat{p}\right] & \in \partial G_{n}^{*}\left(\widehat{\xi}_{n}\right)
\end{aligned}
$$

Advantage. A complete duality theory and a certain symmetry in the optimality conditions.

For $\mathcal{M}=\mathbb{R}^{d}$ and $K=\Lambda$ linear both approaches yield the classical conditions

$$
\begin{aligned}
-K^{*} \widehat{\xi} & \in \partial F(\widehat{p}) \\
K \widehat{p} & \in \partial G^{*}(\widehat{\xi})
\end{aligned}
$$

## The exact Riemannian Chambolle-Pock Algorithm (eRCPA)

Input: $m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n=\Lambda(m), \xi_{n}^{(0)} \in \mathcal{T}_{n}^{*} \mathcal{N}$,
and parameters $\sigma, \tau, \theta>0$
1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged do
4: $\quad \xi_{n}^{(k+1)} \leftarrow \operatorname{prox}_{\tau G_{n}^{*}}\left(\xi_{n}^{(k)}+\tau\left(\log _{n} \Lambda\left(\bar{p}^{(k)}\right)\right)^{b}\right)$
5: $\quad p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F}\left(\exp _{p^{(k)}}\left(\mathcal{P}_{m \rightarrow p^{(k)}}\left(-\sigma D \Lambda(m)^{*}\left[\xi_{n}^{(k+1)}\right]\right)^{\sharp}\right)\right)$
6: $\quad \bar{p}^{(k+1)} \leftarrow \exp _{p^{(k+1)}}\left(-\theta \log _{p^{(k+1)}} p^{(k)}\right)$
7: $\quad k \leftarrow k+1$
8: end while
Output: $p^{(k)}$

## Generalizations \& Variants of the RCPA

Classically

- change $\sigma=\sigma_{k}, \tau=\tau_{k}, \theta=\theta_{k}$ during the iterations
- introduce an acceleration $\gamma$
- relax dual $\bar{\xi}$ instead of primal $\bar{p}$ (switches lines 4 and 5)

Furthermore we

- introduce the IRCPA: linearize $\Lambda$, too, i.e.

$$
\log _{n} \Lambda\left(\bar{p}^{(k)}\right) \quad \rightarrow \quad \mathcal{P}_{\Lambda(m) \rightarrow n} D \Lambda(m)\left[\log _{m} \bar{p}^{(k)}\right]
$$

- choose $n \neq \Lambda(m)$ introduces a parallel transport

$$
D \Lambda(m)^{*}\left[\xi_{n}^{(k+1)}\right] \quad \rightarrow \quad D \Lambda(m)^{*}\left[\mathcal{P}_{n \rightarrow \Lambda(m)} \xi_{n}^{(k+1)}\right]
$$

- change $m=m^{(k)}, n=n^{(k)}$ during the iterations

Input: $m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n=\Lambda(m), \xi_{n}^{(0)} \in \mathcal{T}_{n}^{*} \mathcal{N}$, and parameters $\sigma, \tau, \theta>0$
1: $k \leftarrow 0$
2: $\bar{\xi}_{n}^{(0)} \leftarrow \xi^{(0)}$
3: while not converged do
4: $\quad p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F}\left(\exp _{p^{(k)}}\left(\mathcal{P}_{m \rightarrow p^{(k)}}\left(-\sigma D \Lambda(m)^{*}\left[\bar{\xi}_{n}^{(k)}\right]\right)^{\sharp}\right)\right)$
5: $\left.\quad \xi_{n}^{(k+1)} \leftarrow \operatorname{prox}_{\tau G_{n}^{*}}\left(\xi_{n}^{(k)}+\tau\left(D \Lambda(m)\left[\log _{m} p^{(k+1)}\right]\right)\right)^{b}\right)$
6: $\quad \bar{\xi}_{n}^{(k)} \leftarrow \xi_{n}^{(k)}+\theta\left(\xi_{n}^{(k)}-\xi_{n}^{(k-1)}\right)$.
7: $\quad k \leftarrow k+1$
8: end while
Output: $p^{(k)}$

## The Linearized RCPA with Dual Relaxation

We introduce for ease of notation

$$
\widetilde{p}^{(k)}=\exp _{p^{(k)}}\left(\mathcal{P}_{m \rightarrow p^{(k)}}-\left(\sigma(D \Lambda(m))^{*}\left[\bar{\xi}_{n}^{(k)}\right]\right)^{\sharp}\right)
$$

for the linearized Riemannian Chambolle Pock with dual relaxed

$$
\bar{\xi}_{n}^{(k)} \leftarrow \xi_{n}^{(k)}+\theta\left(\xi_{n}^{(k)}-\xi_{n}^{(k-1)}\right) .
$$

Especially for $\theta=1$ we obtain

$$
\bar{\xi}_{n}^{(k)}=2 \xi_{n}^{(k)}-\xi_{n}^{(k-1)} .
$$

## A Conjecture

We define

$$
C(k):=\frac{1}{\sigma} d^{2}\left(p^{(k)}, \tilde{p}^{(k)}\right)+\left\langle\bar{\xi}_{n}^{(k)}, D \Lambda(m)\left[\zeta_{k}\right]\right\rangle,
$$

where
$\zeta_{k}=\mathcal{P}_{p^{(k)} \rightarrow m}\left(\log _{p^{(k)}} p^{(k+1)}-\mathcal{P}_{\tilde{p}^{(k)} \rightarrow p^{(k)}} \log _{\tilde{p}(k)} \widehat{p}\right)-\log _{m} p^{(k+1)}+\log _{m} \widehat{p}$,
and $\hat{p}$ is a minimizer of the primal problem.

## Remark.

For $\mathcal{M}=\mathbb{R}^{d}: \zeta_{k}=\tilde{p}^{(k)}-p^{(k)}=-\sigma(D \Lambda(m))^{*}\left[\bar{\xi}_{n}^{(k)}\right] \Rightarrow C(k)=0$.
Conjecture.
Assume $\sigma \tau<\|D \Lambda(m)\|^{2}$. Then $C(k) \geq 0$ for all $k>K, K \in \mathbb{N}$.

## Convergence of the IRCPA

## Theorem.

Let $\mathcal{M}, \mathcal{N}$ be Hadamard. Assume that the linearized problem

$$
\min _{p \in \mathcal{M}} \max _{\xi_{n} \in \mathcal{T}_{n}^{*} \mathcal{N}}\left\langle(D \Lambda(m))^{*}\left[\xi_{n}\right], \log _{m} p\right\rangle+F(p)-G_{n}^{*}\left(\xi_{n}\right) .
$$

has a saddle point $\left(\hat{p}, \widehat{\xi}_{n}\right)$. Choose $\sigma, \tau$ such that

$$
\sigma \tau<\|D \Lambda(m)\|^{2}
$$

and assume that $C(k) \geq 0$ for all $k>K$. Then it holds

1. the sequence $\left(p^{(k)}, \xi_{n}^{(k)}\right)$ remains bounded,
2. there exists a saddle-point $\left(p^{\prime}, \xi_{n}^{\prime}\right)$ such that $p^{(k)} \rightarrow p^{\prime}$ and $\xi_{n}^{(k)} \rightarrow \xi_{n}^{\prime}$.

## 4. Numerical Examples

## The $\ell^{2}$-TV Model

 For a manifold-valued image $f \in \mathcal{M}, \mathcal{M}=\mathcal{N}^{d_{1}}$, $d_{2}$, we compute$$
\underset{p \in \mathcal{M}}{\arg \min } \frac{1}{\alpha} F(p)+G(\Lambda(p)), \quad \alpha>0
$$

with

- data term $F(p)=\frac{1}{2} d_{\mathcal{M}}^{2}(p, f)$
. "forward differences" $\Lambda: \mathcal{M} \rightarrow(T \mathcal{N})^{d_{1}-1, d_{2}-1,2}$,

$$
p \mapsto \Lambda(p)=\left(\left(\log _{p_{i}} p_{i+e_{1}}, \log _{p_{i}} p_{i+e_{2}}\right)\right)_{i \in\left\{1, \ldots, d_{1}-1\right\} \times\left\{1, \ldots, d_{2}-1\right\}}
$$

- prior $G(X)=\|X\|_{g, q, 1}$ similar to a collaborative TV


## The $d \times d$ Symmetric Positive Definite Matrices $\mathcal{P}(d)$.

$$
\mathcal{P}(d)=\left\{p \in \mathbb{R}^{d \times d} \mid x^{\mathrm{T}} p x>0 \quad \text { for all } 0 \neq x \in \mathbb{R}^{d}\right\}
$$

Tangent Space. $\mathcal{T}_{p} \mathcal{P}(d)=\left\{\left.p^{\frac{1}{2}} X p^{\frac{1}{2}} \right\rvert\, X \in \mathbb{R}^{d \times d}\right.$ with $\left.\left.X=X^{\mathrm{T}}\right\}\right\}$ Riemannian Metric. $(X, Y)_{p}=\operatorname{tr}\left(p^{-1} X p^{-1} Y\right)$,
Exponential Map. $\exp _{p} X=p^{\frac{1}{2}} \operatorname{Exp}\left(p^{-\frac{1}{2}} X p^{-\frac{1}{2}}\right) p^{\frac{1}{2}}$,
where Exp is the matrix exponential.
Parallel Transport. $P_{p \rightarrow q}(X)=p^{\frac{1}{2}} X^{\prime} p^{-\frac{1}{2}} X p^{-\frac{1}{2}} X^{\prime} p^{\frac{1}{2}}$,

$$
X^{\prime}=\operatorname{Exp}\left(\frac{1}{2} p^{-\frac{1}{2}} \log _{p}(q) p^{-\frac{1}{2}}\right),
$$

where $\log$ is the logarithmic map.
The main tool to compute the matrix square root is the SVD.

## Numerical Example for a $\mathcal{P}(3)$-valued Image


$\mathcal{P}(3)$-valued data.


$$
\text { anisotropic TV, } \alpha=6 .
$$

- in each pixel we have a symmetric positive definite matrix
- Applications: denoising/inpainting e.g. of DT-MRI data


## Numerical Example for a $\mathcal{P}(3)$-valued Image



Approach. CPPA as benchmark

|  | CPPA | PDRA | IRCPA |
| :--- | ---: | ---: | ---: |
| parameters | $\lambda_{k}=\frac{4}{k}$ | $\eta=0.58$ | $\sigma=\tau=0.4$ |
| iterations | 4000 | $\lambda=0.93$ | $\gamma=0.2, m=I$ |
| runtime | 1235 S. | 380 s. | $\mathbf{1 1 3}$ |

## The Sphere $\mathbb{S}^{d}$ as a Manifold

$$
\mathbb{S}^{d}=\left\{p \in \mathbb{R}^{d+1} \mid\|p\|=1\right\}
$$

Tangent Space. $\mathcal{T}_{p} \mathbb{S}^{2}=\left\{X \in \mathbb{R}^{d+1} \mid X^{\mathrm{T}} p=0\right\}$
Riemannian Metric. $(X, Y)_{p}=\langle X, Y\rangle$ from the embedding
Distance. $d_{\mathbb{S}^{d}}(p, q)=\operatorname{acos}(\langle p, q\rangle)$
Exponential Map. $\exp _{p} X=\cos \left(\|\left. X\right|_{2}\right) p+\sin \left(\|X\|_{2}\right) \frac{X}{\|X\|_{2}}$
Parallel Transport. $P_{p \rightarrow q}(X)=X-\frac{\left\langle\log _{p} q, X\right\rangle_{x}}{d_{s_{d}}^{2}(p, q)}\left(\log _{p} q+\log _{q} p\right)$.

## Base point Effect on $\mathbb{S}^{2}$-valued data



## Base point Effect on $\mathbb{S}^{2}$-valued data



- pieceweise constant results for both
! different linearizations lead to different models


## Base point Effect on $\mathbb{S}^{2}$-valued data



## 5. Summary \& Conclusion

## Summary \& Outlook

## Summary.

- We introduced a duality framework on Riemannian manifolds
- We derived a Riemannian Chambolle Pock Algorithm
- Numerical example illustrates performance


## Outlook.

- investigate $C(k)$
- strategies for choosing $m, n$ (adaptively)
- investigate linearization error
- extend algorithm to graph-structured data


## Reproducible Research

The algorithm will be published in Manopt. jl, a Julia Package available at http://manoptjl.org.

Goal.
Being able to use an(y) algorithm for a(ny) model directly on a(ny) manifold easily and efficiently.

## Alternatives.

Manopt - manopt.org
(Matlab, N. Boumal)
pymanopt - pymanopt.github.io
(Python, S. Weichwald et. al.)

## Example.

pOpt = linearizedChambollePock(M, N, cost, $\mathrm{p}, \xi, \mathrm{m}, \mathrm{n}, \mathrm{D} \Lambda, \operatorname{Adj} \mathrm{D} \Lambda, \operatorname{proxF}, \operatorname{proxConj} \mathrm{G}, \sigma, \tau)$

## Reproducible Research

The algorithm will be published in Manopt. jl, a Julia Package available at http://manoptjl.org.

Goal.
Being able to use an(y) algorithm for a(ny) model directly on a(ny) manifold easily and efficiently.

## Alternatives.

Manopt - manopt.org
(Matlab, N. Boumal)
pymanopt - pymanopt.github.io
(Python, S. Weichwald et. al.)

## Example.

pOpt $=$ exactChambollePock(M, N, cost, $\mathrm{p}, \xi, \mathrm{m}, \mathrm{n}, ~ \Lambda, \operatorname{Adj} \mathrm{D} \Lambda, \operatorname{proxF}, \operatorname{proxConj} \mathrm{G}, \sigma, \tau)$

## Selected References

\＃Absil，P．－A．；Mahony，R．；Sepulchre，R．（2008）．Optimization Algorithms on Matrix Manifolds．Princeton University Press．DOI：10．1515／9781400830244．
Bačák，M．（2014）．＂Computing medians and means in Hadamard spaces＂．SIAM Journal on Optimization 24．3，pp．1542－1566．DOI：10．1137／140953393．
E Bergmann，R．；Persch，J．；Steidl，G．（2016）．＂A parallel Douglas Rachford algorithm for minimizing ROF－like functionals on images with values in symmetric Hadamard manifolds＂．SIAM Journal on Imaging Sciences 9．4，pp．901－937．DOI： 10．1137／15M1052858．
\＃Bergmann，R．；Herzog，R．；Tenbrinck，D．；Vidal－Núñez，J．（2019）．Fenchel duality theory and a primal－dual algorithm on Riemannian manifolds．arXiv：1908． 02022.
Chambolle，A．；Pock，T．（2011）．＂A first－order primal－dual algorithm for convex problems with applications to imaging＂．Journal of Mathematical Imaging and Vision 40．1， pp．120－145．DOI：10．1007／s10851－010－0251－1．
Rockafellar，R．T．（1970）．Convex analysis．Princeton Mathematical Series，No． 28. Princeton University Press，Princeton，N．J．

囚 ronnybergmann．net／talks／2020－Birmingham－RiemannianChambollePock．pdf

