The Riemannian Chambolle–Pock Algorithm and Optimization on Manifolds in Julia

Ronny Bergmann

joint work with Seth Axen, Mateusz Baran, Roland Herzog, Maurício Silva Louzeiro, Daniel Tenbrinck, José Vidal-Núñez.

Technische Universität Chemnitz, Chemnitz, Germany

Oberwolfach-from-home November 18, 2020

Contents

1. The Riemannian Chambolle-Pock Algorithm

2. Implementation in Manopt.jl

3. Numerical Example

4. Summary & Outlook

1. The Riemannian Chambolle-Pock Algorithm

The Model

We consider a minimization problem

 $\operatorname*{arg\,min}_{p\in\mathcal{C}}F(p)+G(\Lambda(p))$

- + \mathcal{M}, \mathcal{N} are (high-dimensional) Riemannian Manifolds
- $\cdot \ F \colon \mathcal{M} \to \overline{\mathbb{R}}$ nonsmooth, (locally, geodesically) convex
- $\cdot \ G \colon \mathcal{N} \to \overline{\mathbb{R}}$ nonsmooth, (locally) convex
- $\boldsymbol{\cdot} \ \Lambda \colon \mathcal{M} \to \mathcal{N}$ nonlinear
- + $\mathcal{C} \subset \mathcal{M}$ strongly geodesically convex.

O In image processing:

choose a model, such that finding a minimizer yields the reconstruction

The ℓ^2 -TV Model

[Rudin, Osher, and Fatemi 1992; Lellmann, Strekalovskiy, Koetter, and Cremers 2013; Weinmann, Demaret, and Storath 2014]

For a manifold-valued image $f \in \mathcal{M}$, $\mathcal{M} = \mathcal{N}^{d_1, d_2}$, we compute

$$\underset{p \in \mathcal{M}}{\operatorname{arg\,min}} \frac{1}{\alpha} F(p) + G(\Lambda(p)), \qquad \alpha > 0,$$

with

- data term $F(p) = \frac{1}{2} d_{\mathcal{M}}^2(p, f)$
- "forward differences" $\Lambda \colon \mathcal{M} \to (T\mathcal{M})^{d_1-1, d_2-1, 2}$,

$$p \mapsto \Lambda(p) = \left((\log_{p_i} p_{i+e_1}, \log_{p_i} p_{i+e_2}) \right)_{i \in \{1, \dots, d_1-1\} \times \{1, \dots, d_2-1\}}$$

• prior $G(X) = \|X\|_{g,q,1}$ similar to a collaborative TV [Duran, Moeller

[Duran, Moeller, Sbert, and Cremers 2016]

Splitting Methods & Algorithms

On a Riemannian manifold M we have

- Cyclic Proximal Point Algorithm (CPPA)
- (parallel) Douglas-Rachford Algorithm (PDRA)

On \mathbb{R}^n PDRA is known to be equivalent to

- Primal-Dual Hybrid Gradient Algorithm (PDHGA)
- Chambolle-Pock Algorithm (CPA)

But on a Riemannian manifold \mathcal{M} : Λ no duality theory!

Goals of this talk.

Formulate Duality on a Manifold

Derive a Riemannian Chambolle–Pock Algorithm (RCPA)

[Bačák 2014]

[RB. Persch. and Steidl 2016]]

[O'Connor and Vandenberghe 2018: Setzer 2011]

[Esser Zhang and Chan 2010]

[Chambolle and Pock 2011; Pock, Cremers, Bischof, and Chambolle 2009]

A d-dimensional Riemannian Manifold $\mathcal M$

A *d*-dimensional Riemannian manifold can be informally defined as a set \mathcal{M} covered with a 'suitable' collection of charts, that identify subsets of \mathcal{M} with open subsets of \mathbb{R}^d and a continuously varying inner product on the tangent spaces. [Absil, Mahony, and Sepulchre 2008]

A d-dimensional Riemannian Manifold $\mathcal M$

Geodesic $\gamma(\cdot; p, q)$ a shortest path between $p, q \in \mathcal{M}$ **Tangent space** $\mathcal{T}_p \mathcal{M}$ at pwith inner product $(\cdot, \cdot)_p$ **Logarithmic map** $\log_p q = \dot{\gamma}(0; p, q)$ "speed towards q" Exponential map $\exp_p X = \gamma_{p,X}(1)$, where $\gamma_{p,X}(0) = p$ and $\dot{\gamma}_{p,X}(0) = X$ Parallel transport $P_{a \leftarrow p} Y$ from $\mathcal{T}_p\mathcal{M}$ along $\gamma(\cdot; p, q)$ to $\mathcal{T}_q\mathcal{M}$

Convexity

[Sakai 1996; Udrişte 1994]

A set $C \subset M$ is called (strongly geodesically) convex if for all $p, q \in C$ the geodesic $\gamma(\cdot; p, q)$ is unique and lies in C.

A function $F: \mathcal{C} \to \overline{\mathbb{R}}$ is called (geodesically) convex if for all $p, q \in \mathcal{C}$ the composition $F(\gamma(t; p, q)), t \in [0, 1]$, is convex. The dual space $\mathcal{T}_p^*\mathcal{M}$ of a tangent space $\mathcal{T}_p\mathcal{M}$ is called cotangent space. We denote by $\langle \cdot, \cdot \rangle$ the duality pairing.

We define the musical isomorphisms

- $\cdot \ \flat \colon \mathcal{T}_p\mathcal{M} \ni X \mapsto X^\flat \in \mathcal{T}_p^*\mathcal{M} \text{ via } \langle X^\flat, Y \rangle = (X, Y)_p \text{ for all } Y \in \mathcal{T}_p\mathcal{M}$
- $\sharp : \mathcal{T}_p^* \mathcal{M} \ni \xi \mapsto \xi^{\sharp} \in \mathcal{T}_p \mathcal{M}$ via $(\xi^{\sharp}, Y)_p = \langle \xi, Y \rangle$ for all $Y \in \mathcal{T}_p \mathcal{M}$.

 \Rightarrow inner product and parallel transport on/between $\mathcal{T}_p^*\mathcal{M}$

The Euclidean Fenchel Conjugate

We define the Fenchel conjugate $f^* \colon \mathbb{R}^n \to \overline{\mathbb{R}}$ of $f \colon \mathbb{R}^n \to \overline{\mathbb{R}}$ by

$$f^*(\xi) \coloneqq \sup_{x \in \mathbb{R}^n} \langle \xi, x \rangle - f(x) = \sup_{x \in \mathbb{R}^n} \begin{pmatrix} \xi \\ -1 \end{pmatrix}^{\mathrm{T}} \begin{pmatrix} x \\ f(x) \end{pmatrix}$$

- interpretation: maximize the distance of $\xi^{\mathrm{T}}x$ to f
- \Rightarrow extremum seeking problem on the epigraph

The Fenchel biconjugate reads

$$f^{**}(x) = (f^*)^*(x) = \sup_{\xi \in \mathbb{R}^n} \{ \langle \xi, x \rangle - f^*(\xi) \}.$$

Properties of the Fenchel Conjugate

[Rockafellar 1970]

- The Fenchel conjugate f^* is convex (even if f is not)
- If $f(x) \leq g(x)$ holds for all $x \in \mathbb{R}^n$ then $f^*(\xi) \geq g^*(\xi)$ holds for all $\xi \in \mathbb{R}^n$
- If g(x) = f(x+b) for some $b \in \mathbb{R}$ holds for all $x \in \mathbb{R}^n$ then $g^*(\xi) = f^*(\xi) - \xi^T b$ holds for all $\xi \in \mathbb{R}^n$
- + If $g(x) = \lambda f(x)$, for some $\lambda > 0$, holds for all $x \in \mathbb{R}^n$

then $g^*(\xi) = \lambda f^*(\xi/\lambda)$ holds for all $\xi \in \mathbb{R}^n$

- + f^{**} is the largest convex, lsc function with $f^{**} \leq f$
- especially the Fenchel-Moreau theorem:

f convex, proper, $\mathsf{lsc} \Rightarrow f^{**} = f.$

The Riemannian m-Fenchel Conjugate

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2020] alternative approach: [Ahmadi Kakavandi and Amini 2010]

Idea: Introduce a point on \mathcal{M} to "act as" 0.

Let $m \in \mathcal{C} \subset \mathcal{M}$ be given and $F : \mathcal{C} \to \overline{\mathbb{R}}$. The *m*-Fenchel conjugate $F_m^* : \mathcal{T}_m^* \mathcal{M} \to \overline{\mathbb{R}}$ is defined by

$$F_m^*(\xi_m) \coloneqq \sup_{X \in \mathcal{L}_{\mathcal{C},m}} \big\{ \langle \xi_m, X \rangle - F(\exp_m X) \big\},\$$

where
$$\mathcal{L}_{\mathcal{C},m} \coloneqq \{ X \in \mathcal{T}_m \mathcal{M} \mid q = \exp_m X \in \mathcal{C} \text{ and } \|X\|_p = d(q,p) \}.$$

Let $m' \in \mathcal{C}$. The mm'-Fenchel-biconjugate $F_{mm'}^{**} \colon \mathcal{C} \to \overline{\mathbb{R}}$ is given by

$$F_{mm'}^{**}(p) = \sup_{\xi_{m'} \in \mathcal{T}_{m'}^* \mathcal{M}} \big\{ \langle \xi_{m'}, \log_{m'} p \rangle - F_m^*(\mathsf{P}_{m \leftarrow m'} \xi_{m'}) \big\}.$$

Properties of the m-Fenchel Conjugate

- + F_m^* is convex on $\mathcal{T}_m^*\mathcal{M}$
- · If $F(p) \leq G(p)$ holds for all $p \in \mathcal{C}$

then $F_m^*(\xi_m) \ge G_m^*(\xi_m)$ holds for all $\xi_m \in \mathcal{T}_m^*\mathcal{M}$

• If G(p) = F(p) + a for some $a \in \mathbb{R}$ holds for all $p \in \mathcal{C}$

then $G_m^*(\xi_m) = F_m^*(\xi_m) - a$ holds for all $\xi_m \in \mathcal{T}_m^*\mathcal{M}$

+ If $G(p) = \lambda F(p)$, for some $\lambda >$ 0, holds for all $p \in \mathcal{C}$

then $G^*_m(\xi_m) = \lambda F^*_m(\xi_m/\lambda)$ holds for all $\xi_m \in \mathcal{T}^*_m\mathcal{M}$

- + It holds $F_{mm}^{**} \leq F$ on $\mathcal C$
- especially the Fenchel-Moreau theorem:

If $F \circ \exp_m$ convex (on $\mathcal{T}_m \mathcal{M}$), proper, lsc, then $F_{mm}^{**} = F$ on \mathcal{C} .

Saddle Point Formulation

Let F be geodesically convex, $G \circ \exp_n$ be convex (on $\mathcal{T}_n \mathcal{N}$).

From

 $\min_{p\in\mathcal{C}}F(p)+G(\Lambda(p))$

we derive the saddle point formulation for the n-Fenchel conjugate of G as

$$\min_{p \in \mathcal{C}} \max_{\xi_n \in \mathcal{T}_n^* \mathcal{N}} \langle \xi_n, \log_n \Lambda(p) \rangle + F(p) - G_n^*(\xi_n).$$

For Optimality Conditions and the Dual Prolem: What's Λ^* ?

Approach. Linearization:

 $\Lambda(p) \approx \exp_{\Lambda(m)} D\Lambda(m) [\log_m p]$

[Valkonen 2014]

13

Input:
$$p^{(0)} \in \mathbb{R}^d$$
, $\xi^{(0)} \in \mathbb{R}^d$, and parameters σ , τ , $\theta > 0$
1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged do
4: $\xi^{(k+1)} \leftarrow \operatorname{prox}_{\tau G^*} \left(\xi^{(k)} + \tau \left(\Lambda(\bar{p}^{(k)}) \right) \right)$
5: $p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F} \left(p^{(k)} \qquad \left(-\sigma \Lambda \quad * \xi^{(k+1)} \right)^{\sharp} \right)$
6: $\bar{p}^{(k+1)} \leftarrow p^{(k+1)} + \theta(p^{(k+1)} - p^{(k)})$
7: $k \leftarrow k + 1$
8: end while
Output: $p^{(k)}$

Input:
$$m, p^{(0)} \in C \subset \mathcal{M}, n = \Lambda(m), \xi^{(0)} \in \mathbb{R}^d$$
, and parameters $\sigma, \tau, \theta > 0$
1: $k \leftarrow 0$
2: $\overline{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged **do**
4: $\xi^{(k+1)} \leftarrow \operatorname{prox}_{\tau G^*} \left(\xi^{(k)} + \tau \left(-\Lambda(\overline{p}^{(k)})\right)\right)$
5: $p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F} \left(p^{(k)} - (-\sigma - \Lambda - *\xi^{(k+1)})^{\sharp}\right)$
6: $\overline{p}^{(k+1)} \leftarrow p^{(k+1)} + \theta(p^{(k+1)} - p^{(k)})$
7: $k \leftarrow k + 1$
8: end while
Output: $p^{(k)}$

Input:
$$m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n = \Lambda(m), \xi_n^{(0)} \in \mathcal{T}_n^* \mathcal{N}, \text{ and parameters } \sigma, \tau, \theta > 0$$

1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged **do**
4: $\xi_n^{(k+1)} \leftarrow \operatorname{prox}_{\tau G_n^*}(\xi_n^{(k)} + \tau(\Lambda(\bar{p}^{(k)})))$
5: $p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F}\left(p^{(k)} (-\sigma \Lambda^* \xi_n^{(k+1)})^{\sharp}\right)$
6: $\bar{p}^{(k+1)} \leftarrow p^{(k+1)} + \theta(p^{(k+1)} - p^{(k)})$
7: $k \leftarrow k + 1$
8: end while
Output: $p^{(k)}$

Input:
$$m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n = \Lambda(m), \xi_n^{(0)} \in \mathcal{T}_n^* \mathcal{N}, \text{ and parameters } \sigma, \tau, \theta > 0$$

1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged **do**
4: $\xi_n^{(k+1)} \leftarrow \operatorname{prox}_{\tau G_n^*} (\xi_n^{(k)} + \tau (\log_n \Lambda(\bar{p}^{(k)}))^{\flat})$
5: $p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F} \left(p^{(k)} \qquad (-\sigma \quad \Lambda \quad * \xi_n^{(k+1)})^{\sharp} \right)$
6: $\bar{p}^{(k+1)} \leftarrow p^{(k+1)} + \theta(p^{(k+1)} - p^{(k)})$
7: $k \leftarrow k + 1$
8: end while
Output: $p^{(k)}$

Input:
$$m, p^{(0)} \in C \subset \mathcal{M}, n = \Lambda(m), \xi_n^{(0)} \in \mathcal{T}_n^* \mathcal{N}, \text{ and parameters } \sigma, \tau, \theta > 0$$

1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged **do**
4: $\xi_n^{(k+1)} \leftarrow \operatorname{prox}_{\tau G_n^*}(\xi_n^{(k)} + \tau(\log_n \Lambda(\bar{p}^{(k)}))^{\flat})$
5: $p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F}\left(p^{(k)} \quad (-\sigma D\Lambda(m)^*[\xi_n^{(k+1)}])^{\sharp}\right)$
6: $\bar{p}^{(k+1)} \leftarrow p^{(k+1)} + \theta(p^{(k+1)} - p^{(k)})$
7: $k \leftarrow k + 1$
8: end while
Output: $p^{(k)}$

Input:
$$m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n = \Lambda(m), \xi_n^{(0)} \in \mathcal{T}_n^* \mathcal{N}, \text{ and parameters } \sigma, \tau, \theta > 0$$

1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged **do**
4: $\xi_n^{(k+1)} \leftarrow \operatorname{prox}_{\tau G_n^*} (\xi_n^{(k)} + \tau (\log_n \Lambda(\bar{p}^{(k)}))^{\flat})$
5: $p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F} \left(p^{(k)} (-\sigma D\Lambda(m)^* [\xi_n^{(k+1)}])^{\sharp} \right)$
6: $\bar{p}^{(k+1)} \leftarrow p^{(k+1)} + \theta(p^{(k+1)} - p^{(k)})$
7: $k \leftarrow k + 1$
8: end while
Output: $p^{(k)}$

Input:
$$m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n = \Lambda(m), \xi_n^{(0)} \in \mathcal{T}_n^* \mathcal{N}, \text{ and parameters } \sigma, \tau, \theta > 0$$

1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged do
4: $\xi_n^{(k+1)} \leftarrow \operatorname{prox}_{\tau G_n^*} (\xi_n^{(k)} + \tau (\log_n \Lambda(\bar{p}^{(k)}))^{\flat})$
5: $p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F} \left(p^{(k)} + \mathsf{P}_{p^{(k)} \leftarrow m} (-\sigma D\Lambda(m)^* [\xi_n^{(k+1)}])^{\sharp} \right)$
6: $\bar{p}^{(k+1)} \leftarrow p^{(k+1)} + \theta(p^{(k+1)} - p^{(k)})$
7: $k \leftarrow k + 1$
8: end while
Output: $p^{(k)}$

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2020]

Input:
$$m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n = \Lambda(m), \xi_n^{(0)} \in \mathcal{T}_n^* \mathcal{N}, \text{ and parameters } \sigma, \tau, \theta > 0$$

1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged **do**
4: $\xi_n^{(k+1)} \leftarrow \operatorname{prox}_{\tau G_n^*} (\xi_n^{(k)} + \tau (\log_n \Lambda(\bar{p}^{(k)}))^{\flat})$
5: $p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F} \left(\exp_{p^{(k)}} \left(\mathsf{P}_{p^{(k)} \leftarrow m} (-\sigma D \Lambda(m)^* [\xi_n^{(k+1)}])^{\sharp} \right) \right)$
6: $\bar{p}^{(k+1)} \leftarrow p^{(k+1)} + \theta(p^{(k+1)} - p^{(k)})$
7: $k \leftarrow k + 1$
8: end while
Output: $p^{(k)}$

14

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2020]

Input:
$$m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n = \Lambda(m), \xi_n^{(0)} \in \mathcal{T}_n^* \mathcal{N}, \text{ and parameters } \sigma, \tau, \theta > 0$$

1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged **do**
4: $\xi_n^{(k+1)} \leftarrow \operatorname{prox}_{\tau G_n^*} (\xi_n^{(k)} + \tau (\log_n \Lambda(\bar{p}^{(k)}))^{\flat})$
5: $p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F} \left(\exp_{p^{(k)}} \left(\mathsf{P}_{p^{(k)} \leftarrow m} (-\sigma D\Lambda(m)^* [\xi_n^{(k+1)}])^{\sharp} \right) \right)$
6: $\bar{p}^{(k+1)} \leftarrow p^{(k+1)} - \theta(p^{(k)} - p^{(k+1)})$
7: $k \leftarrow k + 1$
8: end while

Output: $p^{(k)}$

Input:
$$m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n = \Lambda(m), \xi_n^{(0)} \in \mathcal{T}_n^* \mathcal{N}, \text{ and parameters } \sigma, \tau, \theta > 0$$

1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged **do**
4: $\xi_n^{(k+1)} \leftarrow \operatorname{prox}_{\tau G_n^*}(\xi_n^{(k)} + \tau(\log_n \Lambda(\bar{p}^{(k)}))^{\flat})$
5: $p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F}\left(\exp_{p^{(k)}}\left(\mathsf{P}_{p^{(k)} \leftarrow m}(-\sigma D\Lambda(m)^*[\xi_n^{(k+1)}])^{\sharp}\right)\right)$
6: $\bar{p}^{(k+1)} \leftarrow \exp_{p^{(k+1)}}(-\theta \log_{p^{(k+1)}}p^{(k)})$
7: $k \leftarrow k + 1$
8: end while
Output: $p^{(k)}$

Generalizations & Variants of the RCPA

Classically

[Chambolle and Pock 2011]

- · change $\sigma = \sigma_k$, $\tau = \tau_k$, $\theta = \theta_k$ during the iterations
- + introduce an acceleration γ
- relax dual $\bar{\xi}$ instead of primal \bar{p} (switches lines 4 and 5)

Furthermore we

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2020]

- introduce the lRCPA: linearize $\Lambda,$ too, i.e.

$$\log_n \Lambda(\bar{p}^{(k)}) \quad \to \quad \mathsf{P}_{n \leftarrow \Lambda(m)} D\Lambda(m) [\log_m \bar{p}^{(k)}]$$

 $\cdot \,$ choose $n \neq \Lambda(m)$ introduces a parallel transport

 $D\Lambda(m)^*[\xi_n^{(k+1)}] \rightarrow D\Lambda(m)^*[\mathsf{P}_{\Lambda(m)\leftarrow n}\xi_n^{(k+1)}]$

 $\cdot \,$ change $m=m^{(k)}\text{, }n=n^{(k)}$ during the iterations

Convergence of IRPCA

Theorem.

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2020]

Let \mathcal{M}, \mathcal{N} be Hadamard, F be geodesically convex, and $G_n = G \circ \exp_n$ be convex. Assume that the linearized problem

$$\min_{p \in \mathcal{M}} \max_{\xi_n \in \mathcal{T}_n^* \mathcal{N}} \langle (D\Lambda(m))^* [\xi_n], \log_m p \rangle + F(p) - G_n^*(\xi_n).$$

has a saddle point $(\widehat{p},\widehat{\xi}_n)$. Choose σ, τ such that

 $\sigma\tau < \|D\Lambda(m)\|^2$

and additionally a technical assumption holds. Then

- 1. the sequence $(p^{(k)},\xi_n^{(k)})$ remains bounded,
- 2. there exists a saddle-point (p', ξ'_n) such that $p^{(k)} \to p'$ and $\xi^{(k)}_n \to \xi'_n$.

2. Implementation in Manopt.jl

Implementing a Riemannian manifold

ManifoldsBase.jl introduces a manifold type with its field $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$ as parameter to provide an interface for implementing functions like

- inner(M, p, X, Y) for angles between tangent vectors,
- exp(M, p, X) and log(M, p, q),
- more general: retract(M, p, X, m), where m is a retraction method
- moving tangents: vector_transport_to(M, p, X, q, t), where t is a transport method (e.g. ParallelTransport())

for your manifold, which is a subtype of Manifold.

☺ mutating version exp!(M, q, p, X) works in place in q

 → basis for generic algorithms working on any Manifold: norm(M,p,X), geodesic(M, p, X) and shortest_geodesic(M, p, q) are available with the above implemented.

Manifolds.jl - A Library of Manifolds

Manifolds.jl is a library of manifolds with a set tools to implement new ones. Core feature: decorators for manifolds

- M = SymmetricPositiveDefinite(n) behaves as
- MetricManifold(M, LinearAffineMetric())
- MetricManifold(M, LogEuclidean()) behaves as M, despite for exp, log, dist, inner.
- semitransparent decorator pattern
 Similarly: (Abstract)EmbeddedManifold &
 GroupManifold(M, GroupAction)

Manifolds.jl - A Library of Manifolds

Manifolds. jl is a library of manifolds with a set tools to implement new ones. Core feature: decorators for manifolds We cover for example

- M = SymmetricPositiveDefinite(n) behaves as
- MetricManifold(M, LinearAffineMetric())
- MetricManifold(M. LogEuclidean()) behaves as M. despite for exp. log. dist. inner.
- semitransparent decorator pattern $(\mathbf{ })$ Similarly: (Abstract)EmbeddedManifold & GroupManifold(M, GroupAction)

- Euclidean
- Elliptope & Spectrahedron
- Fixed-rank Matrices
- (Generalized) Stiefel
- (Generalized) Grassmann
- Hyperbolic space
- Lorentz space
- Probability simplex
- Rotation
- Skew- & symmetric matrices
- (Array)Sphere & Circle
- · Svmm. Pos. Def.
- Torus

.

Manifolds.jl - A Library of Manifolds

Manifolds. jl is a library of manifolds with a set tools to implement new ones. Core feature: decorators for manifolds

- M = SymmetricPositiveDefinite(n) behaves as
- MetricManifold(M, LinearAffineMetric())
- MetricManifold(M. LogEuclidean()) behaves as M. despite for exp. log. dist. inner.
- semitransparent decorator pattern $(\mathbf{ })$ Similarly: (Abstract)EmbeddedManifold & GroupManifold(M, GroupAction)

And the following constructors

PowerManifold(M.n1.n2....) or short M[^](n1.n2....)

ProductManifold(M,N,...) or short $M \times N \times \dots$

- TangentBundle(M)
- (Co)TangentSpaceAt(M.p)

Manopt.jl - A framework for Optimization on Manifolds

Manopt.jl provides a unified framework for optimization on manifolds as well as a unified set of algorithms based on ManifoldsBase.jl, and hence for all manifolds from Manifolds.jl.

```
An algorithm usually has a high level interface, like gradient_descent(M, F, \nabla F, x0) with usually a lot more keyword options.
```

Example. Use a certain retraction in gradient descent.

```
xOpt = gradient_descent(M, F, ∇F, x0;
    retraction_method = PolarRetraction(),
)
```

The Manopt family: **[] manoptjl.org**

```
Manopt in Matlab
[N.Boumal et. al.]
manopt.org
```

pymanopt in Python [J. Townsend, N. Koep, S. Weichwald]

```
pymanopt.org
```

The Solver Framework

Internally an algorithm is based on a Problem p and Options o. The problem usually stores the manifold in p.M.

Example.

- GradientProblem p is a problem having a p.cost and a p.gradient
- GradientDescentOptions store a current iterate, current gradient, a retraction method to use,

and the implementation requires

- intialize_solver!(p,o) to initialize values within o
- step_solver!(p,o,i) to implement the ith step
- get_solver_result(o) which returns the resulting minimizer.

Stopping Criteria - The stopping_criterion= keyword

A StoppingCriterion is a functor: a struct that is also a function (problem, options, iteration) -> Boolean, for example

- stopAfterIteration(n), stopAfter(time)
- stopWhenChangeLess(eps)
- or more specific stopWhenTrustRegionIsExceeded
- and for multiple criteria: stopWhenAny, stopWhenAll

```
Example. Stop when \|\nabla F(x^{(k)}\|) is less then 10^{-6}
```

```
m = gradient_descent(M, F, ∇F, x0;
    stopping_criterion = stopWhenGradientNormLess(1e-6),
)
```

```
Similarly: Linesearches, e.g. as stepsize = ArmijoLinesearch().
```

Debug & Record

Both DebugOptions(o,A), RecordOptions(o,A) act as if they where just the Options o (decorator pattern), but execute additional print/store after every step.

Examples.

```
o = gradient_descent(M, F, ∇F, x0;
    debug = [:Iteration," | ", :x," | ", :Change," | ", :Cost,"\n",
        50, :Stop],
    record = [:Iteration, :Change, :Cost, :∇],
)
```

- use keywords for :Iteration display and the :Stoping reason
- use keywords (:Cost) or fields (:x) of Options o
- debug= can be interleaved with strings and a number
- Similarly: Record certain values (or fields of the Options)

Available Solvers

- Conjugate Gradient Descent
- Cyclic Proximal Point
- Douglas-Rachford
- Gradient Descent
- Nelder Mead
- Particle Swarm
- Subgradient Method
- Riemannian Trust Regions

☺ high level interface, a default stopping criterion, debug, record, ...

3. Numerical Example

An IRCPA example

Let e.g. F be the cost, and with S=SymmetricPositiveDefinite(3) we set M=S^(32,32) and N=TangentBundle(M^(32,32,2)).

Then, having defined the remaining differentials, proximal maps and parameters we call

```
o = ChambollePock(M, N, F, x0, ξ0, m, n, prox_F, prox_G_dual, DΛ, AdjDΛ;
    primal_stepsize = σ, dual_stepsize = τ, relaxation = θ, acceleration = γ,
    relax = :dual,
    debug = [:Iteration," | ", :Cost, "\n", 10 , :Stop],
    record = [:Iteration, :Cost ],
    stoppingCriterion = sC,
    variant = :linearized,
)
x = get_solver_result(o)
```


anisotropic TV, $\alpha = 6$.

- in each pixel we have a symmetric positive definite matrix
- Applications: denoising/inpainting e.g. of DT-MRI data

Approach. CPPA as benchmark

	СРРА	PDRA	IRCPA
parameters	$\lambda_k = \frac{4}{k}$	$\lambda = 0.58$ $\beta = 0.93$	$\sigma = \tau = 0.4$ $\gamma = 0.2, m = I$
iterations	4000		
runtime	1235 s.		

Approach. CPPA as benchmark

	CPPA	PDRA	IRCPA
parameters	$\lambda_k = \frac{4}{k}$	$\lambda = 0.58$ $\beta = 0.93$	$\sigma = \tau = 0.4$ $\gamma = 0.2, m = I$
iterations	4000		
runtime	1235 s.		

Approach. CPPA as benchmark

	CPPA	PDRA	IRCPA
parameters	$\lambda_k = \frac{4}{k}$	$\lambda = 0.58$ $\beta = 0.93$	$\sigma = \tau = 0.4$ $\gamma = 0.2, m = I$
iterations	4000	122	
runtime	1235 s.	380 s.	

Approach. CPPA as benchmark

	CPPA	PDRA	IRCPA
parameters	$\lambda_k = \frac{4}{k}$	$\lambda = 0.58$ $\beta = 0.93$	$\sigma = \tau = 0.4$ $\gamma = 0.2, m = I$
iterations	4000	122	113
runtime	1235 S.	380 s.	96.1 s.

4. Summary & Outlook

Summary

- Variational Methods for manifold valued data
- Splitting methods for efficient minimization
- A Riemannian Chambolle–Pock Algorithm
- implementation and examples with Manopt.jl in Julia.

What's next?

- \cdot derive a Fenchel duality which "works" with G (geodesically) convex
- Combine ML techniques with ManifoldsBase.jl
- Benchmark of manifold packages (together with S. Axen, M. Baran, K. Rzecki)
- constrained optimization problems and algorithms

Selected References

- Ξ
- Ahmadi Kakavandi, B. and M. Amini (Nov. 2010). "Duality and subdifferential for convex functions on complete metric spaces". In: *Nonlinear Analysis: Theory, Methods & Applications* 73.10, pp. 3450–3455. DOI: 10.1016/j.na.2010.07.033.
- RB, R. Herzog, M. Silva Louzeiro, D. Tenbrinck, and J. Vidal-Núñez (2020). Fenchel duality theory and a primal-dual algorithm on Riemannian manifolds. accepted for publication in Foundations of Computational Mathematics. arXiv: 1908.02022.
- RB, J. Persch, and G. Steidl (2016). "A parallel Douglas Rachford algorithm for minimizing ROF-like functionals on images with values in symmetric Hadamard manifolds". In: SIAM Journal on Imaging Sciences 9.4, pp. 901–937. DOI: 10.1137/15M1052858.
- Chambolle, A. and T. Pock (2011). "A first-order primal-dual algorithm for convex problems with applications to imaging". In: Journal of Mathematical Imaging and Vision 40.1, pp. 120–145. ISSN: 0924-9907. DOI: 10.1007/s10851-010-0251-1.
 - ♂ Manopt.jl: https://manoptjl.org
 - Manifolds.jl https://juliamanifolds.github.io/Manifolds.jl/stable/

ronnybergmann.net/talks/2020-Oberwolfach.pdf