## Fenchel Duality Theory on Riemannian Manifolds

Ronny Bergmann
joint work with
Roland Herzog, Maurício Silva Louzeiro, Daniel Tenbrinck, José Vidal-Núñez.
IFIP TC 7, 2021
Minisymposium: Optimisation \& Manifolds
Quito, Ecuador \& virtual
August 28 -September 3, 2021

## A d-dimensional Riemannian manifold $\mathcal{M}$



A dimensional Riemannian manifold can be informally defined as a set $\mathcal{M}$ covered with a 'suitable' collection of charts, that identify subsets of $\mathcal{M}$ with open subsets of $\mathbb{R}^{d}$ and a continuously varying inner product on the tangent spaces.

## A d-dimensional Riemannian manifold $\mathcal{M}$



Geodesic $\gamma(\cdot ; p, q)$
a shortest path between $p, q \in \mathcal{M}$
Tangent space $\mathcal{T}_{p} \mathcal{M}$ at $p$ with inner product $(\cdot, \cdot)_{p}$
Logarithmic map $\log _{p} q=\dot{\gamma}(0 ; p, q)$ "speed towards $q$ "
Exponential map $\exp _{p} X=\gamma_{p, X}(1)$, where $\gamma_{p, X}(0)=p$ and $\dot{\gamma}_{p, X}(0)=X$
Parallel transport $\mathrm{P}_{q \leftarrow p} Y$
from $\mathcal{T}_{p} \mathcal{M}$ along $\gamma(\cdot ; p, q)$ to $\mathcal{T}_{q} \mathcal{M}$

## The Model

We consider a minimization problem

$$
\underset{p \in \mathcal{C}}{\arg \min } F(p)+G(\Lambda(p))
$$

- $\mathcal{M}, \mathcal{N}$ are (high-dimensional) Riemannian Manifolds
- $F: \mathcal{M} \rightarrow \overline{\mathbb{R}}$ nonsmooth, (locally, geodesically) convex
- $G: \mathcal{N} \rightarrow \overline{\mathbb{R}}$ nonsmooth, (locally) convex
- $\wedge: \mathcal{M} \rightarrow \mathcal{N}$ nonlinear
- $\mathcal{C} \subset \mathcal{M}$ strongly geodesically convex.
$\Theta$ In image processing:
choose a model, such that finding a minimizer yields the reconstruction


## Splitting Methods \& Algorithms

On a Riemannian manifold $\mathcal{M}$ we have

- Cyclic Proximal Point Algorithm (CPPA)
- (parallel) Douglas-Rachford Algorithm (PDRA)
[RB, Persch, and Steidl 2016]
On $\mathbb{R}^{n}$ PDRA is known to be equivalent to
[O'Connor and Vandenberghe 2018; Setzer 2011]
- Primal-Dual Hybrid Gradient Algorithm (PDHGA)
- Chambolle-Pock Algorithm (CPA) [Chambolle and Pock 2011; Pock, Cremers, Bischof, and Chambolle 2009]

But on a Riemannian manifold $\mathcal{M}$ : $\Delta$ no duality theory!

## Goals of this talk.

Formulate Duality (dualities) on a Manifold
To cover different properties.

## Convexity

A set $\mathcal{C} \subset \mathcal{M}$ is called (strongly geodesically) convex if for all $p, q \in \mathcal{C}$ the geodesic $\gamma(\cdot ; p, q)$ is unique and lies in $\mathcal{C}$.

A function $F: \mathcal{C} \rightarrow \overline{\mathbb{R}}$ is called (geodesically) convex if for all $p, q \in \mathcal{C}$ the composition $F(\gamma(t ; p, q)), t \in[0,1]$, is convex.

## The Subdifferential

The subdifferential of $F$ at $p \in \mathcal{C}$ is given by

$$
\partial_{\mathcal{M}} F(p):=\left\{\xi \in \mathcal{T}_{p}^{*} \mathcal{M} \mid F(q) \geq F(p)+\left\langle\xi, \log _{p} q\right\rangle \text { for } q \in \mathcal{C}\right\}
$$

where

- $\mathcal{T}_{p}^{*} \mathcal{M}$ is the dual space of $\mathcal{T}_{p} \mathcal{M}$,
- $\langle\cdot, \cdot\rangle$ denotes the duality pairing on $\mathcal{T}_{p}^{*} \mathcal{M} \times \mathcal{T}_{p} \mathcal{M}$


## The Euclidean Fenchel Conjugate

Let $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be proper and convex.
We define the Fenchel conjugate $f^{*}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ of $f$ by

$$
f^{*}(\xi):=\sup _{x \in \mathbb{R}^{n}}\langle\xi, x\rangle-f(x)=\sup _{x \in \mathbb{R}^{n}}\binom{\xi}{-1}^{\top}\binom{x}{f(x)}
$$

- interpretation: maximize the distance of $\xi^{\top} x$ to $f$
$\Rightarrow$ extremum seeking problem on the epigraph
The Fenchel biconjugate reads

$$
f^{* *}(x)=\left(f^{*}\right)^{*}(x)=\sup _{\xi \in \mathbb{R}^{n}}\left\{\langle\xi, x\rangle-f^{*}(\xi)\right\} .
$$

## Illustration of the Fenchel Conjugate

The function $f$


The Fenchel conjugate $f^{*}$


## Properties of the Fenchel Conjugate

- The Fenchel conjugate $f^{*}$ is convex (even if $f$ is not)
- If $f(x) \leq g(x)$ holds for all $x \in \mathbb{R}^{n}$ then $f^{*}(\xi) \geq g^{*}(\xi)$ holds for all $\xi \in \mathbb{R}^{n}$
- If $g(x)=f(x+b)$ for some $b \in \mathbb{R}$ holds for all $x \in \mathbb{R}^{n}$

$$
\text { then } g^{*}(\xi)=f^{*}(\xi)-\xi^{\top} b \text { holds for all } \xi \in \mathbb{R}^{n}
$$

- If $g(x)=\lambda f(x)$, for some $\lambda>0$, holds for all $x \in \mathbb{R}^{n}$

$$
\text { then } g^{*}(\xi)=\lambda f^{*}(\xi / \lambda) \text { holds for all } \xi \in \mathbb{R}^{n}
$$

- $f^{* *}$ is the largest convex, Isc function with $f^{* *} \leq f$
- especially the Fenchel-Moreau theorem:
$f$ convex, proper, Isc $\Rightarrow f^{* *}=f$.


## Properties of the Fenchel Conjugate II

The Fenchel-Young inequality holds, i.e.,

$$
f(x)+f^{*}(\xi) \geq \xi^{\top} x \quad \text { for all } \quad x, \xi \in \mathbb{R}^{n}
$$

We can characterize subdifferentials

- For a proper, convex function $f$

$$
\xi \in \partial f(x) \Leftrightarrow f(x)+f^{*}(\xi)=\xi^{\top} x
$$

- For a proper, convex, Isc function $f$, then

$$
\xi \in \partial f(x) \Leftrightarrow x \in \partial f^{*}(\xi)
$$

## The Riemannian $m$-Fenchel Conjugate

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021] alternative approach: [Ahmadi Kakavandi and Amini 2010]
Idea: Introduce a point on $\mathcal{M}$ to "act as" 0 .
Let $m \in \mathcal{C} \subset \mathcal{M}$ be given and $F: \mathcal{C} \rightarrow \overline{\mathbb{R}}$.
The $m$-Fenchel conjugate $F_{m}^{*}: \mathcal{T}_{m}^{*} \mathcal{M} \rightarrow \overline{\mathbb{R}}$ is defined by

$$
F_{m}^{*}\left(\xi_{m}\right):=\sup _{X \in \mathcal{L}_{\mathcal{C}, m}}\left\{\left\langle\xi_{m}, X\right\rangle-F\left(\exp _{m} X\right)\right\}
$$

where $\mathcal{L}_{\mathcal{C}, m}:=\left\{X \in \mathcal{T}_{m} \mathcal{M} \mid q=\exp _{m} X \in \mathcal{C}\right.$ and $\left.\|X\|_{p}=d(q, p)\right\}$.
Let $m^{\prime} \in \mathcal{C}$.
The $m m^{\prime}$-Fenchel-biconjugate $F_{m m^{\prime}}^{* *}: \mathcal{C} \rightarrow \overline{\mathbb{R}}$ is given by

$$
F_{m m^{\prime}}^{* *}(p)=\sup _{\xi_{m^{\prime}} \in \mathcal{T}_{m^{\prime}}^{*} \mathcal{M}}\left\{\left\langle\xi_{m^{\prime}}, \log _{m^{\prime}} p\right\rangle-F_{m}^{*}\left(\mathrm{P}_{m \leftarrow m^{\prime}} \xi_{m^{\prime}}\right)\right\} .
$$

usually we only use the case $m=m^{\prime}$.

## Properties of the $m$-Fenchel Conjugate

- $F_{m}^{*}$ is convex on $\mathcal{T}_{m}^{*} \mathcal{M}$
- If $F(p) \leq G(p)$ holds for all $p \in \mathcal{C}$

$$
\text { then } F_{m}^{*}\left(\xi_{m}\right) \geq G_{m}^{*}\left(\xi_{m}\right) \text { holds for all } \xi_{m} \in \mathcal{T}_{m}^{*} \mathcal{M}
$$

- If $G(p)=F(p)+a$ for some $a \in \mathbb{R}$ holds for all $p \in \mathcal{C}$ then $G_{m}^{*}\left(\xi_{m}\right)=F_{m}^{*}\left(\xi_{m}\right)-a$ holds for all $\xi_{m} \in \mathcal{T}_{m}^{*} \mathcal{M}$
- If $G(p)=\lambda F(p)$, for some $\lambda>0$, holds for all $p \in \mathcal{C}$ then $G_{m}^{*}\left(\xi_{m}\right)=\lambda F_{m}^{*}\left(\xi_{m} / \lambda\right)$ holds for all $\xi_{m} \in \mathcal{T}_{m}^{*} \mathcal{M}$
- It holds $F_{m m}^{* *} \leq F$ on $\mathcal{C}$
- especially the Fenchel-Moreau theorem:

If $F \circ \exp _{m}$ convex (on $\mathcal{T}_{m} \mathcal{M}$ ), proper, Isc, then $F_{m m}^{* *}=F$ on $\mathcal{C}$.

## Properties of the $m$-Fenchel Conjugate II

The Fenchel-Young inequality holds, i.e.,

$$
F(p)+F_{m}^{*}\left(\xi_{m}\right) \geq\left\langle\xi_{m}, \log _{m} p\right\rangle \quad \text { for all } \quad p \in \mathcal{C}, \xi_{m} \in \mathcal{T}_{m}^{*} \mathcal{M}
$$

We can characterize subdifferentials

- For a proper, convex function $F \circ \exp _{m}$

$$
\xi_{p} \in \partial_{\mathcal{M}} F(p) \Leftrightarrow F(p)+F_{m}^{*}\left(\mathrm{P}_{m \leftarrow p} \xi_{p}\right)=\left\langle\mathrm{P}_{m \leftarrow p} \xi_{p}, \log _{m} p\right\rangle .
$$

- For a proper, convex, Isc function $F \circ \exp _{m}$

$$
\xi_{p} \in \partial_{\mathcal{M}} F(p) \Leftrightarrow \log _{m} p \in \partial F_{m}^{*}\left(\mathrm{P}_{m \leftarrow p} \xi_{p}\right)
$$

## Saddle Point Formulation

Let $F$ be geodesically convex, $G \circ \exp _{n}$ be convex (on $\mathcal{T}_{n} \mathcal{N}$ ).
From

$$
\min _{p \in \mathcal{C}} F(p)+G(\Lambda(p))
$$

we derive the saddle point formulation for the $n$-Fenchel conjugate of $G$ as

$$
\min _{p \in \mathcal{C}} \max _{\xi_{n} \in \mathcal{T}_{n}^{* \mathcal{N}}}\left\langle\xi_{n}, \log _{n} \Lambda(p)\right\rangle+F(p)-G_{n}^{*}\left(\xi_{n}\right) .
$$

But $\Lambda: \mathcal{M} \rightarrow \mathcal{N}$ is a non-linear operator!
For Optimality Conditions and the Dual Prolem: What's $\Lambda^{*}$ ?
Approach. Linearization: $\quad \Lambda(p) \approx \exp _{\Lambda(m)} D \Lambda(m)\left[\log _{m} p\right]$

## Optimality Conditions for the Saddle Point Problem

The first order opimality conditions for a saddle point of the exact saddle point problem

$$
\left(\widehat{p}, \widehat{\xi}_{n}\right) \in \mathcal{C} \times \mathcal{T}_{n}^{*} \mathcal{N}
$$

can be formally derived as

$$
\begin{aligned}
D * \Lambda(\widehat{p})\left[D * \log _{n}(\Lambda(\widehat{p}))\left[\widehat{\xi}_{n}\right]\right] & \in \partial_{\mathcal{M}} F(\widehat{p}) \\
\log _{n} \Lambda(\hat{p}) & \in \partial G_{n}^{*}\left(\widehat{\xi}_{n}\right)
\end{aligned}
$$

Advantage. By only linearizing for the adjoint, we stay closer to the original problem.

## The m-Fenchel Conjuagte (I) - Summary

- most properties carry over
- exception a shift property $g(x)=f(x+b)$ which depends on linearity
- yields a Riemannian Chambolle-Pock algorithm

But! We need convexity of $F \circ \exp _{m}$ for Fenchel Moreau.

## The Riemannian Fenchel Conjugate (II)

Let $\mathcal{M}$ be a Hadamard manifold and $F: \mathcal{M} \rightarrow \overline{\mathbb{R}}$.
The Fenchel conjugate of $F$ is the function $F^{*}: \mathcal{T}^{*} \mathcal{M} \rightarrow \overline{\mathbb{R}}$ defined by

$$
F^{*}(p, \xi):=\sup _{q \in \mathcal{M}}\left\{\left\langle\xi, \log _{p} q\right\rangle-F(q)\right\} \quad \text { for }(p, \xi) \in \mathcal{T}^{*} \mathcal{M}
$$

and the biconjugate

$$
F^{* *}(p):=\sup _{(q, \xi) \in \mathcal{T}^{*} \mathcal{M}}\left\{\left\langle\xi, \log _{q} p\right\rangle-F^{*}(q, \xi)\right\} \quad \text { for } p \in \mathcal{M}
$$

## Remarks on the Alternate Definition

- The domain is now the whole cotangent bundle $\mathcal{T}^{*} \mathcal{M}$.

Theorem (Fenchel-Moreau-Theorem) [RB, Herzog, and Silva Louzeiro 2021]
Let $F: \mathcal{M} \rightarrow \overline{\mathbb{R}}$ be a proper Isc convex function. Then $F^{* *}=F$ holds.

## Remarks on the Alternate Definition

- The domain is now the whole cotangent bundle $\mathcal{T}^{*} \mathcal{M}$.
- At first glance the dimension doubles - and is reduced again for the biconjugate

Theorem (Fenchel-Moreau-Theorem)
Let $F: \mathcal{M} \rightarrow \overline{\mathbb{R}}$ be a proper Isc convex function. Then $F^{* *}=F$ holds.

## Remarks on the Alternate Definition

- The domain is now the whole cotangent bundle $\mathcal{T}^{*} \mathcal{M}$.
- At first glance the dimension doubles - and is reduced again for the biconjugate
- using the congruence relation

$$
(p, \xi) \sim\left(p^{\prime}, \xi^{\prime}\right) \quad \text { if and only if } \quad\left\langle\xi, \log _{p} q\right\rangle=\left\langle\xi^{\prime}, \log _{p^{\prime}} q\right\rangle \text { holds for all } q \in \mathcal{M}
$$

seems to reduce the dimension again ( $F^{*}$ is constant on $[(p, \xi)]$

Theorem (Fenchel-Moreau-Theorem)
Let $F: \mathcal{M} \rightarrow \overline{\mathbb{R}}$ be a proper Isc convex function. Then $F^{* *}=F$ holds.

## Remarks on the Alternate Definition

- The domain is now the whole cotangent bundle $\mathcal{T}^{*} \mathcal{M}$.
- At first glance the dimension doubles - and is reduced again for the biconjugate
- using the congruence relation

$$
(p, \xi) \sim\left(p^{\prime}, \xi^{\prime}\right) \quad \text { if and only if } \quad\left\langle\xi, \log _{p} q\right\rangle=\left\langle\xi^{\prime}, \log _{p^{\prime}} q\right\rangle \text { holds for all } q \in \mathcal{M}
$$

seems to reduce the dimension again ( $F^{*}$ is constant on $[(p, \xi)]$
$\Rightarrow \operatorname{On} \mathbb{R}^{n}:(p, \xi) \sim\left(p^{\prime}, \xi^{\prime}\right) \Leftrightarrow\left\langle\xi, p^{\prime}\right\rangle=\langle\xi, p\rangle$
$\Rightarrow$ we obtain $F^{*}(\xi)$ as expected.

Theorem (Fenchel-Moreau-Theorem)
Let $F: \mathcal{M} \rightarrow \overline{\mathbb{R}}$ be a proper Isc convex function. Then $F^{* *}=F$ holds.

## Remarks on the Alternate Definition

- The domain is now the whole cotangent bundle $\mathcal{T}^{*} \mathcal{M}$.
- At first glance the dimension doubles - and is reduced again for the biconjugate
- using the congruence relation

$$
(p, \xi) \sim\left(p^{\prime}, \xi^{\prime}\right) \quad \text { if and only if } \quad\left\langle\xi, \log _{p} q\right\rangle=\left\langle\xi^{\prime}, \log _{p^{\prime}} q\right\rangle \text { holds for all } q \in \mathcal{M}
$$

seems to reduce the dimension again ( $F^{*}$ is constant on $[(p, \xi)]$
$\Rightarrow \mathrm{On} \mathbb{R}^{n}:(p, \xi) \sim\left(p^{\prime}, \xi^{\prime}\right) \Leftrightarrow\left\langle\xi, p^{\prime}\right\rangle=\langle\xi, p\rangle$
$\Rightarrow$ we obtain $F^{*}(\xi)$ as expected.

- the "pointwise", Fenchel-Young properties carry over (for fixed $p$ ).

Theorem (Fenchel-Moreau-Theorem)
Let $F: \mathcal{M} \rightarrow \overline{\mathbb{R}}$ be a proper Isc convex function. Then $F^{* *}=F$ holds.

## Remarks on the Alternate Definition

- The domain is now the whole cotangent bundle $\mathcal{T}^{*} \mathcal{M}$.
- At first glance the dimension doubles - and is reduced again for the biconjugate
- using the congruence relation

$$
(p, \xi) \sim\left(p^{\prime}, \xi^{\prime}\right) \quad \text { if and only if } \quad\left\langle\xi, \log _{p} q\right\rangle=\left\langle\xi^{\prime}, \log _{p^{\prime}} q\right\rangle \text { holds for all } q \in \mathcal{M}
$$

seems to reduce the dimension again ( $F^{*}$ is constant on $[(p, \xi)$ ]
$\Rightarrow \mathrm{On} \mathbb{R}^{n}:(p, \xi) \sim\left(p^{\prime}, \xi^{\prime}\right) \Leftrightarrow\left\langle\xi, p^{\prime}\right\rangle=\langle\xi, p\rangle$
$\Rightarrow$ we obtain $F^{*}(\xi)$ as expected.

- the "pointwise", Fenchel-Young properties carry over (for fixed $p$ ).
- Subdifferential property slightly changes: $\xi \in \partial F(p) \Leftrightarrow F^{*}(p, \xi)=-F(p)$.

Theorem (Fenchel-Moreau-Theorem)
Let $F: \mathcal{M} \rightarrow \overline{\mathbb{R}}$ be a proper Isc convex function. Then $F^{* *}=F$ holds.

## A comparison for the Translation property

We can not generalize

$$
g(x)=f(x+b) \text { for all } x \Rightarrow g^{*}(\xi)=f^{*}(\xi)-\xi^{\top} b \text { for all } \xi
$$

from $\mathbb{R}^{n}$ to (Hadamard) manifolds,
since the translation is "encoded into" both definitions:

For $\mathcal{M}=\mathbb{R}^{n}$ we get in both definitions

- $F_{m}^{*}\left(\xi_{m}\right)=F_{0}^{*}\left(\xi_{m}\right)-\left\langle\xi_{m}, m\right\rangle=F^{*}\left(\xi_{m}\right)-\left\langle\xi_{m}, m\right\rangle$
- $F^{*}\left(\xi_{m}, m\right)=F^{*}\left(\xi_{m}, 0\right)-\left\langle\xi_{m}, m\right\rangle=F^{*}\left(\xi_{m}\right)-\left\langle\xi_{m}, m\right\rangle$


## Summary and Outlook

## Summary.

- We introduced two frameworks for Fenchel duality on Riemannian manifolds
- The first yields a Riemannian Chambolle-Pock Algorithm

吅 Tue @ $15: 15$ bst (22:15 cEST) in MS Non-Smooth First-order Methods, Convex, and Non-convex
! Fenchel-Moreau depends on convexity of $F \circ \exp _{m}$

- The second duality yields a (geodesically) convex Fenchel-Moreau Theorem
! At first glance doubles dimension of the Domain for the Dual


## Outlook.

- investigate equivalence classes
- derive a Riemannian Chambolle-Pock algorithm for the second defintion
- investigate further properties and algorithms


## Selected References



Absil, P.-A., R. Mahony, and R. Sepulchre (2008). Optimization Algorithms on Matrix Manifolds. Princeton University Press. DOI: 10.1515/9781400830244.

Ahmadi Kakavandi, B. and M. Amini (Nov. 2010). "Duality and subdifferential for convex functions on complete metric spaces". In: Nonlinear Analysis: Theory, Methods \& Applications 73.10, pp. 3450-3455. DOI: 10.1016/j.na.2010.07.033.
Z RB, R. Herzog, and M. Silva Louzeiro (2021). Fenchel duality and a separation theorem on Hadamard manifolds. arXiv: 2102.11155.


RB, R. Herzog, M. Silva Louzeiro, D. Tenbrinck, and J. Vidal-Núñez (Jan. 2021). "Fenchel duality theory and a primal-dual algorithm on Riemannian manifolds". In: Foundations of Computational Mathematics. DOI: $10.1007 / \mathrm{s} 10208-020-09486-5$.
Rockafellar, R. T. (1970). Convex Analysis. Vol. 28. Princeton Mathematical Series. Princeton, New Jersey: Princeton University Press. URL: https://www.jstor.org/stable/j.ctt14bs1ff.
Valkonen, T. (2014). "A primal-dual hybrid gradient method for nonlinear operators with applications to MRI". In: Inverse Problems 30.5, p. 055012. Doi: 10.1088/0266-5611/30/5/055012.

ronnybergmann.net/talks/2021-IFIP-Fenchel-Duality.pdf

