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A d-dimensional Riemannian manifold M
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Geodesic γ(·; p , q)
a shortest path between p, q ∈ M

Tangent space TpM at p
with inner product (· , ·)p

Logarithmic map logp q = γ̇(0; p, q)
“speed towards q”

Exponential map expp X = γp,X(1) ,
where γp,X(0) = p and γ̇p,X(0) = X

Parallel transport Pq←pY
from TpM along γ(·; p , q) to TqM

A d-dimensional Riemannian manifold can be informally defined as a set M covered
with a ‘suitable’ collection of charts, that identify subsets of M with open subsets of

Rd and a continuously varying inner product on the tangent spaces.
[Absil, Mahony, and Sepulchre 2008]
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The Model

We consider a minimization problem

argmin
p∈C

F(p) + G(Λ(p))

▶ M,N are (high-dimensional) Riemannian Manifolds
▶ F : M → R nonsmooth, (locally, geodesically) convex
▶ G : N → R nonsmooth, (locally) convex
▶ Λ: M → N nonlinear
▶ C ⊂ M strongly geodesically convex.

In image processing:
choose a model, such that finding a minimizer yields the reconstruction
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Splitting Methods & Algorithms

On a Riemannian manifold M we have
▶ Cyclic Proximal Point Algorithm (CPPA) [Bačák 2014]

▶ (parallel) Douglas–Rachford Algorithm (PDRA) [RB, Persch, and Steidl 2016]

On Rn PDRA is known to be equivalent to [O’Connor and Vandenberghe 2018; Setzer 2011]

▶ Primal-Dual Hybrid Gradient Algorithm (PDHGA) [Esser, Zhang, and Chan 2010]

▶ Chambolle-Pock Algorithm (CPA) [Chambolle and Pock 2011; Pock, Cremers, Bischof, and Chambolle 2009]

But on a Riemannian manifold M: no duality theory!

Goals of this talk.
Formulate Duality (dualities) on a Manifold
To cover different properties.
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Convexity

[Sakai 1996; Udrişte 1994]

A set C ⊂ M is called (strongly geodesically) convex
if for all p, q ∈ C the geodesic γ(·; p , q) is unique and lies in C.

A function F : C → R is called (geodesically) convex
if for all p, q ∈ C the composition F(γ(t; p , q)), t ∈ [0, 1], is convex.
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The Subdifferential

[Lee 2003; Udrişte 1994]

The subdifferential of F at p ∈ C is given by

∂MF(p) := {ξ ∈ T ∗pM|F(q) ≥ F(p) + ⟨ξ , logp q⟩ for q ∈ C},

where
▶ T ∗pM is the dual space of TpM,
▶ ⟨· , ·⟩ denotes the duality pairing on T ∗pM×TpM
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The Euclidean Fenchel Conjugate

Let f : Rn → R be proper and convex.
We define the Fenchel conjugate f∗ : Rn → R of f by

f∗(ξ) := sup
x∈Rn

⟨ξ, x⟩ − f(x) = sup
x∈Rn

(
ξ
−1

)T( x
f(x)

)

▶ interpretation: maximize the distance of ξTx to f
⇒ extremum seeking problem on the epigraph

The Fenchel biconjugate reads

f∗∗(x) = (f∗)∗(x) = sup
ξ∈Rn

{⟨ξ , x⟩ − f∗(ξ)}.
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Illustration of the Fenchel Conjugate
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Properties of the Fenchel Conjugate

[Rockafellar 1970]

▶ The Fenchel conjugate f∗ is convex (even if f is not)
▶ If f(x) ≤ g(x) holds for all x ∈ Rn then f∗(ξ) ≥ g∗(ξ) holds for all ξ ∈ Rn

▶ If g(x) = f(x + b) for some b ∈ R holds for all x ∈ Rn

then g∗(ξ) = f∗(ξ)− ξTb holds for all ξ ∈ Rn

▶ If g(x) = λf(x), for some λ > 0, holds for all x ∈ Rn

then g∗(ξ) = λf∗(ξ/λ) holds for all ξ ∈ Rn

▶ f∗∗ is the largest convex, lsc function with f∗∗ ≤ f
▶ especially the Fenchel–Moreau theorem:

f convex, proper, lsc ⇒ f∗∗ = f.
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Properties of the Fenchel Conjugate II

The Fenchel–Young inequality holds, i.e.,

f(x) + f∗(ξ) ≥ ξTx for all x, ξ ∈ Rn

We can characterize subdifferentials
▶ For a proper, convex function f

ξ ∈ ∂f(x) ⇔ f(x) + f∗(ξ) = ξTx

▶ For a proper, convex, lsc function f, then

ξ ∈ ∂f(x) ⇔ x ∈ ∂f∗(ξ)
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The Riemannian m−Fenchel Conjugate
[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

alternative approach: [Ahmadi Kakavandi and Amini 2010]

Idea: Introduce a point on M to “act as” 0.
Let m ∈ C ⊂ M be given and F : C → R.
The m-Fenchel conjugate F∗m : T ∗mM → R is defined by

F∗m(ξm) := sup
X∈LC,m

{
⟨ξm ,X⟩ − F(expm X)

}
,

where LC,m := {X ∈ TmM | q = expm X ∈ C and ∥X∥p = d(q, p)}.

Let m′ ∈ C.
The mm′-Fenchel-biconjugate F∗∗mm′ : C → R is given by

F∗∗mm′(p) = sup
ξm′∈T ∗

m′M

{
⟨ξm′ , logm′ p⟩ − F∗m(Pm←m′ξm′)

}
.

usually we only use the case m = m′.
11



Properties of the m-Fenchel Conjugate

▶ F∗m is convex on T ∗mM
▶ If F(p) ≤ G(p) holds for all p ∈ C

then F∗m(ξm) ≥ G∗m(ξm) holds for all ξm ∈ T ∗mM
▶ If G(p) = F(p) + a for some a ∈ R holds for all p ∈ C

then G∗m(ξm) = F∗m(ξm)− a holds for all ξm ∈ T ∗mM
▶ If G(p) = λF(p), for some λ > 0, holds for all p ∈ C

then G∗m(ξm) = λF∗m(ξm/λ) holds for all ξm ∈ T ∗mM
▶ It holds F∗∗mm ≤ F on C
▶ especially the Fenchel-Moreau theorem:

If F ◦ expm convex (on TmM), proper, lsc, then F∗∗mm = F on C.

12



Properties of the m-Fenchel Conjugate II

The Fenchel–Young inequality holds, i.e.,

F(p) + F∗m(ξm) ≥ ⟨ξm , logm p⟩ for all p ∈ C, ξm ∈ T ∗mM

We can characterize subdifferentials
▶ For a proper, convex function F ◦ expm

ξp ∈ ∂MF(p) ⇔ F(p) + F∗m(Pm←pξp) = ⟨Pm←pξp , logm p⟩.

▶ For a proper, convex, lsc function F ◦ expm

ξp ∈ ∂MF(p) ⇔ logm p ∈ ∂F∗m(Pm←pξp).
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Saddle Point Formulation

Let F be geodesically convex, G ◦ expn be convex (on TnN ).

From
min
p∈C

F(p) + G(Λ(p))

we derive the saddle point formulation for the n-Fenchel conjugate of G as

min
p∈C

max
ξn∈T ∗nN

⟨ξn , logn Λ(p)⟩+ F(p)− G∗n(ξn).

But Λ: M → N is a non-linear operator!

For Optimality Conditions and the Dual Prolem: What’s Λ∗?
Approach. Linearization: [Valkonen 2014]

Λ(p) ≈ expΛ(m) DΛ(m)[logm p]
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Optimality Conditions for the Saddle Point Problem

The first order opimality conditions for a saddle point of the exact saddle point problem

(p̂, ξ̂n) ∈ C × T ∗nN

can be formally derived as

D ∗ Λ(p̂)
[
D ∗ logn(Λ(p̂))[ξ̂n]

]
∈ ∂MF(p̂)

logn Λ(p̂) ∈ ∂G∗n(ξ̂n)

Advantage. By only linearizing for the adjoint, we stay closer to the original problem.

15



The m-Fenchel Conjuagte (I) – Summary

▶ most properties carry over
▶ exception a shift property g(x) = f(x + b) which depends on linearity
▶ yields a Riemannian Chambolle–Pock algorithm

But! We need convexity of F ◦ expm for Fenchel Moreau.
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The Riemannian Fenchel Conjugate (II)

[RB, Herzog, and Silva Louzeiro 2021]

Let M be a Hadamard manifold and F : M → R.
The Fenchel conjugate of F is the function F∗ : T ∗M → R defined by

F∗(p, ξ) := sup
q∈M

{
⟨ξ , logp q⟩ − F(q)

}
for (p, ξ) ∈ T ∗M.

and the biconjugate

F∗∗(p) := sup
(q,ξ)∈T ∗M

{
⟨ξ , logq p⟩ − F∗(q, ξ)

}
for p ∈ M.
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Remarks on the Alternate Definition
▶ The domain is now the whole cotangent bundle T ∗M.

▶ At first glance the dimension doubles – and is reduced again for the biconjugate
▶ using the congruence relation

(p, ξ) ∼ (p′, ξ′) if and only if ⟨ξ , logp q⟩ = ⟨ξ′ , logp′ q⟩ holds for all q ∈ M

seems to reduce the dimension again (F∗ is constant on [(p, ξ)]

⇒ On Rn: (p, ξ) ∼ (p′, ξ′) ⇔ ⟨ξ , p′⟩ = ⟨ξ , p⟩
⇒ we obtain F∗(ξ) as expected.

▶ the “pointwise”, Fenchel-Young properties carry over (for fixed p).
▶ Subdifferential property slightly changes: ξ ∈ ∂F(p) ⇔ F∗(p, ξ) = −F(p).

Theorem (Fenchel-Moreau-Theorem) [RB, Herzog, and Silva Louzeiro 2021]

Let F : M → R be a proper lsc convex function. Then F∗∗ = F holds.
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A comparison for the Translation property

We can not generalize

g(x) = f(x + b) for all x ⇒ g∗(ξ) = f∗(ξ)− ξTb for all ξ

from Rn to (Hadamard) manifolds,
since the translation is “encoded into” both definitions:

For M = Rn we get in both definitions
▶ F∗m(ξm) = F∗0(ξm)− ⟨ξm ,m⟩ = F∗(ξm)− ⟨ξm ,m⟩
▶ F∗(ξm,m) = F∗(ξm, 0)− ⟨ξm ,m⟩ = F∗(ξm)− ⟨ξm ,m⟩
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Summary and Outlook
Summary.
▶ We introduced two frameworks for Fenchel duality on Riemannian manifolds
▶ The first yields a Riemannian Chambolle–Pock Algorithm

Tue @ 15:15 BST (22:15 CEST) in MS Non-Smooth First-order Methods, Convex,
and Non-convex

! Fenchel-Moreau depends on convexity of F ◦ expm
▶ The second duality yields a (geodesically) convex Fenchel-Moreau Theorem
! At first glance doubles dimension of the Domain for the Dual

Outlook.
▶ investigate equivalence classes
▶ derive a Riemannian Chambolle–Pock algorithm for the second defintion
▶ investigate further properties and algorithms

20



Selected References
Absil, P.-A., R. Mahony, and R. Sepulchre (2008). Optimization Algorithms on Matrix Manifolds. Princeton
University Press. doi: 10.1515/9781400830244.
Ahmadi Kakavandi, B. and M. Amini (Nov. 2010). “Duality and subdifferential for convex functions on
complete metric spaces”. In: Nonlinear Analysis: Theory, Methods & Applications 73.10, pp. 3450–3455.
doi: 10.1016/j.na.2010.07.033.
RB, R. Herzog, and M. Silva Louzeiro (2021). Fenchel duality and a separation theorem on Hadamard
manifolds. arXiv: 2102.11155.
RB, R. Herzog, M. Silva Louzeiro, D. Tenbrinck, and J. Vidal-Núñez (Jan. 2021). “Fenchel duality theory
and a primal-dual algorithm on Riemannian manifolds”. In: Foundations of Computational Mathematics.
doi: 10.1007/s10208-020-09486-5.
Rockafellar, R. T. (1970). Convex Analysis. Vol. 28. Princeton Mathematical Series. Princeton, New Jersey:
Princeton University Press. url: https://www.jstor.org/stable/j.ctt14bs1ff.
Valkonen, T. (2014). “A primal–dual hybrid gradient method for nonlinear operators with applications to
MRI”. In: Inverse Problems 30.5, p. 055012. doi: 10.1088/0266-5611/30/5/055012.

ronnybergmann.net/talks/2021-IFIP-Fenchel-Duality.pdf

21

https://doi.org/10.1515/9781400830244
https://doi.org/10.1016/j.na.2010.07.033
https://arxiv.org/abs/2102.11155
https://doi.org/10.1007/s10208-020-09486-5
https://www.jstor.org/stable/j.ctt14bs1ff
https://doi.org/10.1088/0266-5611/30/5/055012
http://ronnybergmann.net/talks/2021-IFIP-Fenchel-Duality.pdf

