A Primal-Dual Algorithm for Convex Nonsmooth Optimization on Riemannian Manifolds

Ronny Bergmann
joint work with
Roland Herzog, Maurício Silva Louzeiro, Daniel Tenbrinck, José Vidal-Núñez.

IFIP TC 7, 2021
Minisymposium: Non-Smooth First-order Methods, Convex, and Non-convex Quito, Ecuador \& virtual

The Model

We consider a minimization problem

$$
\underset{p \in \mathcal{C}}{\arg \min } F(p)+G(\Lambda(p))
$$

- \mathcal{M}, \mathcal{N} are (high-dimensional) Riemannian Manifolds
- $F: \mathcal{M} \rightarrow \overline{\mathbb{R}}$ nonsmooth, (locally, geodesically) convex
- $G: \mathcal{N} \rightarrow \overline{\mathbb{R}}$ nonsmooth, (locally) convex
- $\wedge: \mathcal{M} \rightarrow \mathcal{N}$ nonlinear
- $\mathcal{C} \subset \mathcal{M}$ strongly geodesically convex.
Θ In image processing:
choose a model, such that finding a minimizer yields the reconstruction

Splitting Methods \& Algorithms

On a Riemannian manifold \mathcal{M} we have

- Cyclic Proximal Point Algorithm (CPPA)
- (parallel) Douglas-Rachford Algorithm (PDRA)
[RB, Persch, and Steidl 2016]
On \mathbb{R}^{n} PDRA is known to be equivalent to
[O'Connor and Vandenberghe 2018; Setzer 2011]
- Primal-Dual Hybrid Gradient Algorithm (PDHGA)
[Esser, Zhang, and Chan 2010]
- Chambolle-Pock Algorithm (CPA) [Chambolle and Pock 2011; Pock, Cremers, Bischof, and Chambolle 2009]

But on a Riemannian manifold \mathcal{M} : \triangle no duality theory!

Goals of this talk.

Formulate Duality on a Manifold
Derive a Riemannian Chambolle-Pock Algorithm (RCPA)

A d-dimensional Riemannian manifold \mathcal{M}

A dimensional Riemannian manifold can be informally defined as a set \mathcal{M} covered with a 'suitable' collection of charts, that identify subsets of \mathcal{M} with open subsets of \mathbb{R}^{d} and a continuously varying inner product on the tangent spaces.

A d-dimensional Riemannian manifold \mathcal{M}

Geodesic $\gamma(\cdot ; p, q)$
a shortest path between $p, q \in \mathcal{M}$
Tangent space $\mathcal{T}_{p} \mathcal{M}$ at p with inner product $(\cdot, \cdot)_{p}$
Logarithmic map $\log _{p} q=\dot{\gamma}(0 ; p, q)$ "speed towards q "
Exponential map $\exp _{p} X=\gamma_{p, X}(1)$, where $\gamma_{p, X}(0)=p$ and $\dot{\gamma}_{p, X}(0)=X$
Parallel transport $\mathrm{P}_{q \leftarrow p} Y$
from $\mathcal{T}_{p} \mathcal{M}$ along $\gamma(\cdot ; p, q)$ to $\mathcal{T}_{q} \mathcal{M}$

Musical Isomorphisms

The dual space $\mathcal{T}_{p}^{*} \mathcal{M}$ of a tangent space $\mathcal{T}_{p} \mathcal{M}$ is called cotangent space.
We denote by $\langle\cdot, \cdot\rangle$ the duality pairing.
We define the musical isomorphisms

- b: $\mathcal{T}_{p} \mathcal{M} \ni X \mapsto X^{b} \in \mathcal{T}_{p}^{*} \mathcal{M}$ via $\langle X, Y\rangle=(X, Y)_{p}$ for all $Y \in \mathcal{T}_{p} \mathcal{M}$
- $\sharp: \mathcal{T}_{p}^{*} \mathcal{M} \ni \xi \mapsto \xi^{\sharp} \in \mathcal{T}_{p} \mathcal{M}$ via $\left(\xi^{\sharp}, Y\right)_{p}=\langle\xi, Y\rangle$ for all $Y \in \mathcal{T}_{p} \mathcal{M}$.
\Rightarrow inner product and parallel transport on/between $\mathcal{T}_{p}^{*} \mathcal{M}$

Convexity

A set $\mathcal{C} \subset \mathcal{M}$ is called (strongly geodesically) convex if for all $p, q \in \mathcal{C}$ the geodesic $\gamma(\cdot ; p, q)$ is unique and lies in \mathcal{C}.

A function $F: \mathcal{C} \rightarrow \overline{\mathbb{R}}$ is called (geodesically) convex if for all $p, q \in \mathcal{C}$ the composition $F(\gamma(t ; p, q)), t \in[0,1]$, is convex.

The Euclidean Fenchel Conjugate

Let $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be proper and convex.
We define the Fenchel conjugate $f^{*}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ of f by

$$
f^{*}(\xi):=\sup _{x \in \mathbb{R}^{n}}\langle\xi, x\rangle-f(x)=\sup _{x \in \mathbb{R}^{n}}\binom{\xi}{-1}^{\top}\binom{x}{f(x)}
$$

- interpretation: maximize the distance of $\xi^{\top} x$ to f
\Rightarrow extremum seeking problem on the epigraph
The Fenchel biconjugate reads

$$
f^{* *}(x)=\left(f^{*}\right)^{*}(x)=\sup _{\xi \in \mathbb{R}^{n}}\left\{\langle\xi, x\rangle-f^{*}(\xi)\right\} .
$$

Illustration of the Fenchel Conjugate

The Fenchel conjugate f^{*}

The Riemannian m-Fenchel Conjugate

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021] alternative approach: [Ahmadi Kakavandi and Amini 2010]
Idea: Introduce a point on \mathcal{M} to "act as" 0 .
Let $m \in \mathcal{C} \subset \mathcal{M}$ be given and $F: \mathcal{C} \rightarrow \overline{\mathbb{R}}$.
The m-Fenchel conjugate $F_{m}^{*}: \mathcal{T}_{m}^{*} \mathcal{M} \rightarrow \overline{\mathbb{R}}$ is defined by

$$
F_{m}^{*}\left(\xi_{m}\right):=\sup _{X \in \mathcal{L}_{\mathcal{C}, m}}\left\{\left\langle\xi_{m}, X\right\rangle-F\left(\exp _{m} X\right)\right\}
$$

where $\mathcal{L}_{\mathcal{C}, m}:=\left\{X \in \mathcal{T}_{m} \mathcal{M} \mid q=\exp _{m} X \in \mathcal{C}\right.$ and $\left.\|X\|_{p}=d(q, p)\right\}$.
Let $m^{\prime} \in \mathcal{C}$.
The $m m^{\prime}$-Fenchel-biconjugate $F_{m m^{\prime}}^{* *}: \mathcal{C} \rightarrow \overline{\mathbb{R}}$ is given by

$$
F_{m m^{\prime}}^{* *}(p)=\sup _{\xi_{m^{\prime}} \in \mathcal{T}_{m^{\prime}}^{*} \mathcal{M}}\left\{\left\langle\xi_{m^{\prime}}, \log _{m^{\prime}} p\right\rangle-F_{m}^{*}\left(\mathrm{P}_{m \leftarrow m^{\prime}} \xi_{m^{\prime}}\right)\right\} .
$$

usually we only use the case $m=m^{\prime}$.

Saddle Point Formulation

Let F be geodesically convex, $G \circ \exp _{n}$ be convex (on $\mathcal{T}_{n} \mathcal{N}$).
From

$$
\min _{p \in \mathcal{C}} F(p)+G(\Lambda(p))
$$

we derive the saddle point formulation for the n-Fenchel conjugate of G as

$$
\min _{p \in \mathcal{C}} \max _{\xi_{n} \in \mathcal{T}_{n}^{* \mathcal{N}}}\left\langle\xi_{n}, \log _{n} \Lambda(p)\right\rangle+F(p)-G_{n}^{*}\left(\xi_{n}\right) .
$$

But $\Lambda: \mathcal{M} \rightarrow \mathcal{N}$ is a non-linear operator!
For Optimality Conditions and the Dual Prolem: What's Λ^{*} ?
Approach. Linearization: $\quad \Lambda(p) \approx \exp _{\Lambda(m)} D \Lambda(m)\left[\log _{m} p\right]$

The exact Riemannian Chambolle-Pock Algorithm (eRCPA)

Input: $m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n=\Lambda(m), \xi_{n}^{(0)} \in \mathcal{T}_{n}^{*} \mathcal{N}$, and parameters $\sigma, \tau, \theta>0$
1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged do
4: $\quad \xi_{n}^{(k+1)} \leftarrow \operatorname{prox}_{\tau}{G_{n}^{*}} \xi_{n}^{(k)}+\tau\left(\log _{n} \Lambda\left(\bar{p}^{(k)}\right)\right)^{b}$
5: $\quad p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma} F^{\exp } p_{p^{(k)}}\left(\mathrm{P}_{m \leftarrow} p^{(k)}\left(-\sigma D \Lambda(m)^{*}\left[\xi_{n}^{(k+1)}\right]\right)^{\sharp}\right)$
6: $\quad \bar{p}^{(k+1)} \leftarrow \exp _{p^{(k+1)}}\left(-\theta \log _{p^{(k+1)}} p^{(k)}\right)$
7: $\quad k \leftarrow k+1$
8: end while
Output: $p^{(k)}$

Generalizations \& Variants of the RCPA

Classically

- change $\sigma=\sigma_{k}, \tau=\tau_{k}, \theta=\theta_{k}$ during the iterations
- introduce an acceleration γ
- relax dual $\bar{\xi}$ instead of primal \bar{p} (switches lines 4 and 5)

Furthermore we
[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

- introduce the IRCPA: linearize Λ, i. e., adopt the Euclidean case from [Valkonen 2014]

$$
\log _{n} \Lambda\left(\bar{p}^{(k)}\right) \quad \rightarrow \quad \mathrm{P}_{n \leftarrow \Lambda(m)} D \Lambda(m)\left[\log _{m} \bar{p}^{(k)}\right]
$$

- choose $n \neq \Lambda(m)$ introduces a parallel transport

$$
D \Lambda(m)^{*}\left[\xi_{n}^{(k+1)}\right] \quad \rightarrow \quad D \Lambda(m)^{*}\left[P_{\Lambda(m) \leftarrow n} \xi_{n}^{(k+1)}\right]
$$

- change $m=m^{(k)}, n=n^{(k)}$ during the iterations

The Linearized RCPA with Dual Relaxation

We introduce for ease of notation

$$
\tilde{p}^{(k)}=\exp _{p^{(k)}}\left(\mathrm{P}_{p^{(k) \leftarrow m}}-\left(\sigma(D \Lambda(m))^{*}\left[\bar{\xi}_{n}^{(k)}\right]\right)^{\sharp}\right)
$$

for the linearized Riemannian Chambolle Pock with dual relaxed

$$
\bar{\xi}_{n}^{(k)} \leftarrow \xi_{n}^{(k)}+\theta\left(\xi_{n}^{(k)}-\xi_{n}^{(k-1)}\right) .
$$

Especially for $\theta=1$ we obtain

$$
\bar{\xi}_{n}^{(k)}=2 \xi_{n}^{(k)}-\xi_{n}^{(k-1)} .
$$

A Conjecture

We define

$$
C(k):=\frac{1}{\sigma} d^{2}\left(p^{(k)}, \tilde{p}^{(k)}\right)+\left\langle\bar{\xi}_{n}^{(k)}, D \Lambda(m)\left[\zeta_{k}\right]\right\rangle
$$

where

$$
\zeta_{k}=\mathrm{P}_{m \leftarrow p^{(k)}}\left(\log _{p^{(k)}} p^{(k+1)}-\mathrm{P}_{p^{(k)} \tilde{p}^{(k)}} \log _{\tilde{p}^{(k)}} \widehat{p}\right)-\log _{m} p^{(k+1)}+\log _{m} \widehat{p},
$$

and \hat{p} is a minimizer of the primal problem.
Remark.
For $\mathcal{M}=\mathbb{R}^{d}: \zeta_{k}=\tilde{p}^{(k)}-p^{(k)}=-\sigma(D \Lambda(m))^{*}\left[\bar{\xi}_{n}^{(k)}\right] \Rightarrow C(k)=0$.
Conjecture.
Assume $\sigma \tau<\|D \Lambda(m)\|^{2}$. Then $C(k) \geq 0$ for all $k>K, K \in \mathbb{N}$.

Convergence of the IRCPA

Theorem.
Let \mathcal{M}, \mathcal{N} be Hadamard. Assume that the linearized problem

$$
\min _{p \in \mathcal{M}} \max _{\xi_{n} \in \mathcal{T}_{n}^{* \mathcal{N}}}\left\langle(D \Lambda(m))^{*}\left[\xi_{n}\right], \log _{m} p\right\rangle+F(p)-G_{n}^{*}\left(\xi_{n}\right)
$$

has a saddle point $\left(\hat{p}, \widehat{\xi}_{n}\right)$.
Choose σ, τ such that

$$
\sigma \tau<\|D \Lambda(m)\|^{2}
$$

and assume that $C(k) \geq 0$ for all $k>K$. Then it holds

1. the sequence $\left(p^{(k)}, \xi_{n}^{(k)}\right)$ remains bounded,
2. there exists a saddle-point $\left(p^{\prime}, \xi_{n}^{\prime}\right)$ such that $p^{(k)} \rightarrow p^{\prime}$ and $\xi_{n}^{(k)} \rightarrow \xi_{n}^{\prime}$.

The ℓ^{2}-TV Model

[Rudin, Osher, and Fatemi 1992; Lellmann, Strekalovskiy, Koetter, and Cremers 2013; Weinmann, Demaret, and Storath 2014]
For a manifold-valued image $f \in \mathcal{M}, \mathcal{M}=\mathcal{N}^{d_{1}}, d_{2}$, we compute

$$
\underset{p \in \mathcal{M}}{\arg \min } \frac{1}{\alpha} F(p)+G(\Lambda(p)), \quad \alpha>0
$$

with

- data term $F(p)=\frac{1}{2} d_{\mathcal{M}}^{2}(p, f)$
- "forward differences" $\wedge: \mathcal{M} \rightarrow(T \mathcal{M})^{d_{1}-1, d_{2}-1,2}$,

$$
p \mapsto \Lambda(p)=\left(\left(\log _{p_{i}} p_{i+e_{1}}, \log _{p_{i}} p_{i+e_{2}}\right)\right)_{i \in\left\{1, \ldots, d_{1}-1\right\} \times\left\{1, \ldots, d_{2}-1\right\}}
$$

- prior $G(X)=\|X\|_{g, q, 1}$ similar to a collaborative TV

Numerical Example for a $\mathcal{P}(3)$-valued Image

- in each pixel we have a symmetric positive definite matrix
- Applications: denoising/inpainting e.g. of DT-MRI data

Numerical Example for a $\mathcal{P}(3)$-valued Image

Base point Effect on \mathbb{S}^{2}-valued data

Base point Effect on \mathbb{S}^{2}-valued data

Result, m the mean (p. Px.)

Base point Effect on \mathbb{S}^{2}-valued data

Summary \& Outlook

Summary.

- We introduced a duality framework on Riemannian manifolds
- We derived a Riemannian Chambolle-Pock Algorithm
- Numerical examples illustrate performance

Outlook.

- investigate $C(k)$ and the error of linearization
- strategies for choosing m, n (adaptively)
- alternative models of Fenchel duality (e.g. without m)

回 Thu @ 11:00 вst (18:00 cEST) in MS Optimization and Manifolds

- higher order methods non-smooth methods

임 W. Diepeveen, Thu @ 11:30 bst (18:30 cest) in MS Optimization and Manifolds

Reproducible Research

The algorithm is published in Manopt.jl, a Julia Package available at http://manoptjl.org.

It uses the interface from ManifoldsBase.jl and any manifold from Manifolds.jl can be used in the algorithms.
https://juliamanifolds.github. io/Manifolds. jl/

Goal.

Being able to use an(y) algorithm for a(ny) model directly on a(ny) manifold easily and efficiently.

Alternatives.

- Manopt, manopt.org (Matlab, by N. Boumal)
- pymanopt, pymanopt.github.io (Python, by S. Weichwald, J. Townsend, N. Koep)

Selected References

Ahmadi Kakavandi, B. and M. Amini (Nov. 2010). "Duality and subdifferential for convex functions on complete metric spaces". In: Nonlinear Analysis: Theory, Methods \& Applications 73.10, pp. 3450-3455. Doi: 10.1016/j.na.2010.07.033.

Axen, S. D., M. Baran, RB, and K. Rzecki (2021). Manifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds. arXiv: 2106.08777.

RB, R. Herzog, and M. Silva Louzeiro (2021). Fenchel duality and a separation theorem on Hadamard manifolds. arXiv: 2102.11155.
RB, R. Herzog, M. Silva Louzeiro, D. Tenbrinck, and J. Vidal-Núñez (Jan. 2021). "Fenchel duality theory and a primal-dual algorithm on Riemannian manifolds". In: Foundations of Computational Mathematics. DOI: 10.1007/s10208-020-09486-5.
Chambolle, A. and T. Pock (2011). "A first-order primal-dual algorithm for convex problems with applications to imaging". In: Journal of Mathematical Imaging and Vision 40.1, pp. 120-145. Dor: 10.1007/s10851-010-0251-1.

Valkonen, T. (2014). "A primal-dual hybrid gradient method for nonlinear operators with applications to MRI". In: Inverse Problems 30.5, p. 055012. Doi: 10.1088/0266-5611/30/5/055012.
ronnybergmann.net/talks/2021-IFIP-RCPA.pdf

