Splitting Methods for Non-smooth Optimization on Manifolds

Ronny Bergmann
joint work with
R. Herzog, M. Silva Louzeiro, J. Persch, G. Steidl, D. Tenbrinck, J. Vidal-Núñez.

DNA Seminar, NTNU,

Splitting Methods in Optimization

When solving an nonsmooth, high-dimensional optimisation problem

$$
\underset{p \in \mathcal{M}}{\arg \min } f(p)
$$

we want to use that our $f: \mathcal{M} \rightarrow \overline{\mathbb{R}}$ can be written as

$$
\underset{p \in \mathcal{M}}{\arg \min } \sum_{i=1}^{N} f_{i}(p)
$$

for optimisation problems on a Riemannian manifold \mathcal{M}.

Manifold-valued Signal \& Image Processing

Tasks in Image Processing is phrased as an optimisation problem. Here. The pixel take values on a manifold

- phase-valued data $\left(\mathbb{S}^{1}\right)$
- wind-fields, GPS (\mathbb{S}^{2})
- DT-MRI ($\mathcal{P}(3))$
- EBSD, (grain) orientations (SO(n))

Artificial noisy phase-valued data.

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...

Manifold-valued Signal \& Image Processing

Tasks in Image Processing is phrased as an optimisation problem. Here. The pixel take values on a manifold

- phase-valued data $\left(\mathbb{S}^{1}\right)$
- wind-fields, GPS (\mathbb{S}^{2})
- DT-MRI ($\mathcal{P}(3))$
- EBSD, (grain) orientations (SO(n))

InSAR-Data of Mt. Vesuvius.
[Rocca, Prati, and Guarnieri 1997]

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...

Manifold-valued Signal \& Image Processing

Tasks in Image Processing is phrased as an optimisation problem. Here. The pixel take values on a manifold

- phase-valued data $\left(\mathbb{S}^{1}\right)$
- wind-fields, GPS (\mathbb{S}^{2})
- DT-MRI ($\mathcal{P}(3))$
- EBSD, (grain) orientations (SO(n))

Artificial noisy data on the sphere \mathbb{S}^{2}.

Tasks. Denoising, Inpainting, labeling (classification), deblurring, ...

Manifold-valued Signal \& Image Processing

Tasks in Image Processing is phrased as an optimisation problem. Here. The pixel take values on a manifold

- phase-valued data $\left(\mathbb{S}^{1}\right)$
- wind-fields, GPS (\mathbb{S}^{2})
- DT-MRI ($\mathcal{P}(3))$
- EBSD, (grain) orientations (SO(n))

Artificial diffusion data, each pixel is a symmetric positive matrix.

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...

Manifold-valued Signal \& Image Processing

Tasks in Image Processing is phrased as an optimisation problem. Here. The pixel take values on a manifold

- phase-valued data $\left(\mathbb{S}^{1}\right)$
- wind-fields, GPS (\mathbb{S}^{2})
- DT-MRI ($\mathcal{P}(3))$
- EBSD, (grain) orientations (SO (n))

DT-MRI of the human brain.
Camino Profject: cmic.cs.ucl.ac.uk/camino

Tasks. Denoising, Inpainting, labeling (classification), deblurring, ...

Manifold-valued Signal \& Image Processing

Tasks in Image Processing is phrased as an optimisation problem. Here. The pixel take values on a manifold

- phase-valued data $\left(\mathbb{S}^{1}\right)$
- wind-fields, GPS (\mathbb{S}^{2})
- DT-MRI ($\mathcal{P}(3))$
- EBSD, (grain) orientations (SO(n))

Grain orientations in EBSD data.
MTEX toolbox: mtex-toolbox.github.io

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...

Regression \& Interpolation

Regression. Find a geodesic/curve "explaining the data best"
[Rentmeesters 2011; Fletcher 2013]

A dimensional Riemannian manifold \mathcal{M}

Notation.

- Geodesic $\gamma(\because ; \boldsymbol{p}, \boldsymbol{q})$
- Tangent space $\mathcal{T}_{p} \mathcal{M}$
- inner product $(\cdot, \cdot)_{p}$
- Logarithmic map $\log _{p} q=\dot{\gamma}(0 ; p, q)$
- Exponential map $\exp _{p} X=\gamma_{p, X}(1)$ where $\gamma_{p, X}(0)=p$ and $\dot{\gamma}_{p, X}(0)=X$

- Parallel transport $\mathrm{P}_{q \leftarrow p} Y$ "move" tangent vectors from $\mathcal{T}_{p} \mathcal{M}$ to $\mathcal{T}_{q} \mathcal{M}$

The Proximal Map

For $\varphi: \mathcal{M} \rightarrow(-\infty,+\infty]$ and $\lambda>0$ the Proximum is defined by
[Moreau 1965; Rockafellar 1976; Ferreira and Oliveira 2002]

$$
\operatorname{prox}_{\lambda \varphi}(p):=\underset{q \in \mathcal{M}}{\arg \min } \frac{1}{2} d_{\mathcal{M}}(q, p)^{2}+\lambda \varphi(q) .
$$

The Proximal Map

For $\varphi: \mathcal{M} \rightarrow(-\infty,+\infty]$ and $\lambda>0$ the Proximum is defined by
[Moreau 1965; Rockafellar 1976; Ferreira and Oliveira 2002]

$$
\operatorname{prox}_{\lambda \varphi}(p):=\underset{q \in \mathcal{M}}{\arg \min } \frac{1}{2} d_{\mathcal{M}}(q, p)^{2}+\lambda \varphi(q)
$$

$-\operatorname{prox}_{\lambda \varphi}$ is well defined for convex, Isc. φ

The Proximal Map

For $\varphi: \mathcal{M} \rightarrow(-\infty,+\infty]$ and $\lambda>0$ the Proximum is defined by
[Moreau 1965; Rockafellar 1976; Ferreira and Oliveira 2002]

$$
\operatorname{prox}_{\lambda \varphi}(p):=\underset{q \in \mathcal{M}}{\arg \min } \frac{1}{2} d_{\mathcal{M}}(q, p)^{2}+\lambda \varphi(q) .
$$

- $\operatorname{prox}_{\lambda \varphi}$ is well defined for convex, Isc. φ
- their proximal map is non-expansive

The Proximal Map

For $\varphi: \mathcal{M} \rightarrow(-\infty,+\infty]$ and $\lambda>0$ the Proximum is defined by
[Moreau 1965; Rockafellar 1976; Ferreira and Oliveira 2002]

$$
\operatorname{prox}_{\lambda \varphi}(p):=\underset{q \in \mathcal{M}}{\arg \min } \frac{1}{2} d_{\mathcal{M}}(q, p)^{2}+\lambda \varphi(q)
$$

- $\operatorname{prox}_{\lambda \varphi}$ is well defined for convex, Isc. φ
- their proximal map is non-expansive
- a minimizer q^{*} of φ is a fix point of the prox: $\operatorname{prox}_{\lambda \varphi}\left(q^{*}\right)=q^{*}$

The Proximal Map

For $\varphi: \mathcal{M} \rightarrow(-\infty,+\infty]$ and $\lambda>0$ the Proximum is defined by
[Moreau 1965; Rockafellar 1976; Ferreira and Oliveira 2002]

$$
\operatorname{prox}_{\lambda \varphi}(p):=\underset{q \in \mathcal{M}}{\arg \min } \frac{1}{2} d_{\mathcal{M}}(q, p)^{2}+\lambda \varphi(q) .
$$

- $\operatorname{prox}_{\lambda \varphi}$ is well defined for convex, Isc. φ
- their proximal map is non-expansive
- a minimizer q^{*} of φ is a fix point of the prox: $\operatorname{prox}_{\lambda \varphi}\left(q^{*}\right)=q^{*}$
- starting with some $p_{0} \in \mathcal{M}$ the proximal point algorithm (PPA)

$$
p_{k+1}=\operatorname{prox}_{\lambda_{k} \varphi}\left(p_{k}\right)
$$

converges (weakly) if $\left\{\lambda_{k}\right\}_{k} \notin \ell_{1}(\mathbb{N})$ on Hadamard manifolds.

The Proximal Map

For $\varphi: \mathcal{M} \rightarrow(-\infty,+\infty]$ and $\lambda>0$ the Proximum is defined by
[Moreau 1965; Rockafellar 1976; Ferreira and Oliveira 2002]

$$
\operatorname{prox}_{\lambda \varphi}(p):=\underset{q \in \mathcal{M}}{\arg \min } \frac{1}{2} d_{\mathcal{M}}(q, p)^{2}+\lambda \varphi(q) .
$$

- $\operatorname{prox}_{\lambda \varphi}$ is well defined for convex, Isc. φ
- their proximal map is non-expansive
- a minimizer q^{*} of φ is a fix point of the prox: $\operatorname{prox}_{\lambda \varphi}\left(q^{*}\right)=q^{*}$
- starting with some $p_{0} \in \mathcal{M}$ the proximal point algorithm (PPA)

$$
p_{k+1}=\operatorname{prox}_{\lambda_{k} \varphi}\left(p_{k}\right)
$$

converges (weakly) if $\left\{\lambda_{k}\right\}_{k} \notin \ell_{1}(\mathbb{N})$ on Hadamard manifolds.
But. computing one step (numerically) might be quite expensive.

Cyclic Proximal Point Algorithm

Idea. Split $f=\sum_{i=1}^{N} f_{i}$ and apply the
Cyclic Proximal Point-Algorithmus (CPPA):
[Bertsekas 2011; Bačák 2014]

$$
p_{k+\frac{i+1}{N}}=\operatorname{prox}_{\lambda_{k} f_{i}}\left(p_{k+\frac{i}{N}}\right), \quad i=0, \ldots, N-1, k=0,1, \ldots
$$

This converges on to a minimizer of f on a Hadamard manifold \mathcal{M} if

- all f_{i} proper, convex, Isc.
- $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}} \in \ell_{2}(\mathbb{N}) \backslash \ell_{1}(\mathbb{N})$.

Applications of CPPA

The algorithm works well also

- with inexact/approximate evaluations of the proximal maps
- works numerically on non-Hadamard manifolds
- a lot of simple proximal maps available in closed form:

1. distance $\varphi(p)=\frac{1}{n} d_{\mathcal{M}}(p, q)^{n}, n \in\{1,2\}, p \in \mathcal{M}$
2. finite difference $\varphi(p)=\frac{1}{n} d_{\mathcal{M}}\left(p_{1}, p_{2}\right)^{n}, n \in\{1,2\}, p \in \mathcal{M}^{2}$

- second order difference $\varphi(p)=d_{2, \mathcal{M}}\left(p_{1}, p_{2}, p_{3}\right), p \in M^{3}$

Applications of CPPA

The algorithm works well also

- with inexact/approximate evaluations of the proximal maps
[Bačák, RB, Steidl, and Weinmann 2016]
- works numerically on non-Hadamard manifolds
- a lot of simple proximal maps available in closed form:

1. distance $\varphi(p)=\frac{1}{n} d_{\mathcal{M}}(p, q)^{n}, n \in\{1,2\}, p \in \mathcal{M}$
2. finite difference $\varphi(p)=\frac{1}{n} d_{\mathcal{M}}\left(p_{1}, p_{2}\right)^{n}, n \in\{1,2\}, p \in \mathcal{M}^{2}$

- second order difference $\varphi(p)=d_{2, \mathcal{M}}\left(p_{1}, p_{2}, p_{3}\right), p \in M^{3}$

Example. $\ell^{2}-\mathrm{TV}$ for a given signal $f \in \mathcal{M}^{N}$

$$
\underset{p \in \mathcal{M}^{N}}{\arg \min } \frac{1}{2} d_{\mathcal{M}^{N}}(f, p)^{2}+\sum_{i=1}^{N-1} d_{\mathcal{M}}\left(p_{i}, p i+1\right)
$$

The Reflection

A map \mathcal{R}_{p} is called Reflection on \mathcal{M}, if

$$
\mathcal{R}_{p}(p)=p \quad \text { and } \quad D_{p} \mathcal{R}_{p}=-I \quad \text { hold }
$$

Analogously: Reflection at the prox we denote by

$$
\mathcal{R}_{\lambda \varphi}(x)=\mathcal{R}_{\operatorname{prox}_{\lambda \varphi}(x)}(x)
$$

Example. On \mathbb{R}^{n} we have $\mathcal{R}_{p}(x)=2 p-x=p-(x-p)$.

The Douglas-Rachford Algorithm (DRA)

Goal. Find a minimizer of two proper, convex, Isc. functions

$$
\underset{p \in \mathcal{M}}{\arg \min } F(p)+G(p)
$$

Iteration: For $p_{0} \in \mathcal{M}$ compute the Krasnoselskii-Mann-iteration, i.e.,

$$
\begin{aligned}
q_{k} & =\mathcal{R}_{\lambda F}\left(\mathcal{R}_{\lambda G}\left(p_{k}\right)\right) \\
p_{k+1} & =\gamma\left(\beta_{k} ; p_{k}, q_{k}\right)
\end{aligned}
$$

with $\beta_{k} \in(0,1)$ and $\sum_{k \in \mathbb{N}} \beta_{k}\left(1-\beta_{k}\right)=\infty$

Convergence of the Douglas-Rachford Algorithm

Theorem

[Kakavandi 2013]
Let $\mathcal{R}_{\lambda F}, \mathcal{R}_{\lambda G}$ be non-expansive and hence $T=\mathcal{R}_{\lambda F} \circ \mathcal{R}_{\lambda G}$ is nonexpansive. Let T possess a fix point \hat{q}.
Then the sequence $\left\{q_{k}\right\}$ in the DRA converges for every start point $p_{0} \in \mathcal{M}$ to a fix point \hat{q} of T (in the q_{k}).

Convergence of the Douglas-Rachford Algorithm

Theorem

Let $\mathcal{R}_{\lambda F}, \mathcal{R}_{\lambda G}$ be non-expansive and hence $T=\mathcal{R}_{\lambda F} \circ \mathcal{R}_{\lambda G}$ is nonexpansive. Let T possess a fix point \hat{q}.
Then the sequence $\left\{q_{k}\right\}$ in the DRA converges for every start point $p_{0} \in \mathcal{M}$ to a fix point \hat{q} of T (in the q_{k}).

Theoreom

Let F, G be proper, convex, Isc., let there be a minimizer p^{\star} of $F+G$, and let $T=\mathcal{R}_{\lambda F} \circ \mathcal{R}_{\lambda G}$ be non-expansive.
Then there exists for every p^{\star} a fix point \hat{q} of T, such that

$$
p^{\star}=\operatorname{prox}_{\lambda \psi}(\hat{q})
$$

holds. Further, for every \hat{q}, the point $\operatorname{prox}_{\lambda \psi}(\hat{q})$ is a minimizer of $F+G$.

Imaging: Parallel (or consensus) Douglas-Rachford.

For a sum $f=\sum_{i=1}^{N} f_{i}$ vectorize the objective

$$
G(\boldsymbol{x})=\sum_{i=1}^{N} f_{i}\left(x_{i}\right), \quad \boldsymbol{x} \in \mathcal{M}^{N}
$$

$\Rightarrow \operatorname{prox}_{\lambda G}$ is element-wise easy proxes

And

$$
F(\boldsymbol{x})=\iota_{D}(\boldsymbol{x}), \quad D:=\left\{\boldsymbol{x} \in \mathcal{M}^{N}: x_{1}=x_{2}=\cdots=x_{N}\right\}
$$

$\Rightarrow \operatorname{prox}_{\lambda F}$ is the Riemannian center of mass (mean).

Imaging: Parallel (or consensus) Douglas-Rachford.

For a sum $f=\sum_{i=1}^{N} f_{i}$ vectorize the objective

$$
G(\boldsymbol{x})=\sum_{i=1}^{N} f_{i}\left(x_{i}\right), \quad \boldsymbol{x} \in \mathcal{M}^{N}
$$

$\Rightarrow \operatorname{prox}_{\lambda G}$ is element-wise easy proxes

And

$$
F(\boldsymbol{x})=\iota_{D}(\boldsymbol{x}), \quad D:=\left\{\boldsymbol{x} \in \mathcal{M}^{N}: x_{1}=x_{2}=\cdots=x_{N}\right\}
$$

$\Rightarrow \operatorname{prox}_{\lambda F}$ is the Riemannian center of mass (mean).

We obtain convergence on Hadamard manifolds of constant curvature and numerically works fine on Hadamard manifolds.

The Riemannian m-Fenchel Conjugate

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]
alternative approaches: [Ahmadi Kakavandi and Amini 2010; RB, Herzog, and Silva Louzeiro 2021]
Let $m \in \mathcal{C} \subset \mathcal{M}$ be given and $F: \mathcal{C} \rightarrow \overline{\mathbb{R}}$.
The m-Fenchel conjugate $F_{m}^{*}: \mathcal{T}_{m}^{*} \mathcal{M} \rightarrow \overline{\mathbb{R}}$ is defined by

$$
F_{m}^{*}\left(\xi_{m}\right):=\sup _{X \in \mathcal{L}_{\mathcal{C}, m}}\left\{\left\langle\xi_{m}, X\right\rangle-F\left(\exp _{m} X\right)\right\},
$$

where $\mathcal{L}_{\mathcal{C}, m}:=\left\{X \in \mathcal{T}_{m} \mathcal{M} \mid q=\exp _{m} X \in \mathcal{C}\right.$ and $\left.\|X\|_{p}=d(q, p)\right\}$.

The Riemannian m-Fenchel Conjugate

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]
alternative approaches: [Ahmadi Kakavandi and Amini 2010; RB, Herzog, and Silva Louzeiro 2021]
Let $m \in \mathcal{C} \subset \mathcal{M}$ be given and $F: \mathcal{C} \rightarrow \overline{\mathbb{R}}$.
The m-Fenchel conjugate $F_{m}^{*}: \mathcal{T}_{m}^{*} \mathcal{M} \rightarrow \overline{\mathbb{R}}$ is defined by

$$
F_{m}^{*}\left(\xi_{m}\right):=\sup _{X \in \mathcal{L}_{\mathcal{C}, m}}\left\{\left\langle\xi_{m}, X\right\rangle-F\left(\exp _{m} X\right)\right\},
$$

where $\mathcal{L}_{\mathcal{C}, m}:=\left\{X \in \mathcal{T}_{m} \mathcal{M} \mid q=\exp _{m} X \in \mathcal{C}\right.$ and $\left.\|X\|_{p}=d(q, p)\right\}$.
A new model. This can be used to minimize

$$
\underset{p \in \mathcal{C}}{\arg \min } F(p)+G(\Lambda(p))
$$

where we have to linearize $\Lambda: \mathcal{M} \rightarrow \mathcal{N}$ as $\Lambda(p) \approx \exp _{\Lambda(m)} D \Lambda(m)\left[\log _{m} p\right]$

The Exact Riemannian Chambolle-Pock Algorithm (eRCPA)

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021; Chambolle and Pock 2011]
Goal. Minimize $F(p)+G(\Lambda(p))$ with an arbitrary map $\wedge \mathcal{M} \rightarrow \mathcal{N}$.
Input: $\quad p^{(0)} \in \mathbb{R}^{d} \quad, \quad \xi^{(0)} \in \mathbb{R}^{d}$, and parameters $\sigma, \tau, \theta>0$
1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged do
4: $\quad \xi^{(k+1)} \leftarrow \operatorname{prox}_{\tau G^{*}}\left(\xi^{(k)}+\tau\left(\quad \Lambda\left(\bar{p}^{(k)}\right)\right)\right)$
5: $\quad p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F}\left(p^{(k)} \quad\left(-\sigma \Lambda \quad{ }^{*} \xi^{(k+1)}\right)^{\sharp}\right)$
6: $\quad \bar{p}^{(k+1)} \leftarrow p^{(k+1)}+\theta\left(p^{(k+1)}-p^{(k)}\right)$
7: $\quad k \leftarrow k+1$
8: end while
Output: $p^{(k)}$

The Exact Riemannian Chambolle-Pock Algorithm (eRCPA)

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021; Chambolle and Pock 2011]
Goal. Minimize $F(p)+G(\Lambda(p))$ with an arbitrary map $\wedge \mathcal{M} \rightarrow \mathcal{N}$.
Input: $m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n=\Lambda(m), \xi^{(0)} \in \mathbb{R}^{d}$, and parameters $\sigma, \tau, \theta>0$
1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged do
4: $\quad \xi^{(k+1)} \leftarrow \operatorname{prox}_{\tau G^{*}}\left(\xi^{(k)}+\tau\left(\quad \Lambda\left(\bar{p}^{(k)}\right)\right)\right)$
5: $\quad p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F}\left(p^{(k)} \quad\left(-\sigma \Lambda \quad{ }^{*} \xi^{(k+1)}\right)^{\sharp}\right)$
6: $\quad \bar{p}^{(k+1)} \leftarrow p^{(k+1)}+\theta\left(p^{(k+1)}-p^{(k)}\right)$
7: $\quad k \leftarrow k+1$
8: end while
Output: $p^{(k)}$

The Exact Riemannian Chambolle-Pock Algorithm (eRCPA)

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021; Chambolle and Pock 2011]

Goal. Minimize $F(p)+G(\Lambda(p))$ with an arbitrary map $\wedge \mathcal{M} \rightarrow \mathcal{N}$.
Input: $m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n=\Lambda(m), \xi_{n}^{(0)} \in \mathcal{T}_{n}^{*} \mathcal{N}$, and parameters $\sigma, \tau, \theta>0$
1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged do
4: $\quad \xi_{n}^{(k+1)} \leftarrow \operatorname{prox}_{\tau} \boldsymbol{G}_{n}^{*}\left(\xi_{n}^{(k)}+\tau\left(\quad \Lambda\left(\bar{p}^{(k)}\right)\right)\right)$
5: $\quad p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F}\left(p^{(k)} \quad\left(-\sigma \Lambda \quad{ }^{*} \xi_{n}^{(k+1)}\right)^{\sharp}\right)$
6: $\quad \bar{p}^{(k+1)} \leftarrow p^{(k+1)}+\theta\left(p^{(k+1)}-p^{(k)}\right)$
7: $\quad k \leftarrow k+1$
8: end while
Output: $p^{(k)}$

The Exact Riemannian Chambolle-Pock Algorithm (eRCPA)

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021; Chambolle and Pock 2011]
Goal. Minimize $F(p)+G(\Lambda(p))$ with an arbitrary map $\wedge \mathcal{M} \rightarrow \mathcal{N}$.
Input: $m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n=\Lambda(m), \xi_{n}^{(0)} \in \mathcal{T}_{n}^{*} \mathcal{N}$, and parameters $\sigma, \tau, \theta>0$
1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged do
4: $\quad \xi_{n}^{(k+1)} \leftarrow \operatorname{prox}_{\tau G_{n}^{*}}\left(\xi_{n}^{(k)}+\tau\left(\log _{n} \Lambda\left(\bar{p}^{(k)}\right)\right)^{b}\right)$
5: $\quad p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F}\left(p^{(k)} \quad\left(-\sigma \Lambda \quad * \xi_{n}^{(k+1)}\right)^{\sharp}\right)$
6: $\quad \bar{p}^{(k+1)} \leftarrow p^{(k+1)}+\theta\left(p^{(k+1)}-p^{(k)}\right)$
7: $\quad k \leftarrow k+1$
8: end while
Output: $p^{(k)}$

The Exact Riemannian Chambolle-Pock Algorithm (eRCPA)

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021; Chambolle and Pock 2011]
Goal. Minimize $F(p)+G(\Lambda(p))$ with an arbitrary map $\wedge \mathcal{M} \rightarrow \mathcal{N}$.
Input: $m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n=\Lambda(m), \xi_{n}^{(0)} \in \mathcal{T}_{n}^{*} \mathcal{N}$, and parameters $\sigma, \tau, \theta>0$
1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged do
4: $\quad \xi_{n}^{(k+1)} \leftarrow \operatorname{prox}_{\tau} G_{n}^{*}\left(\xi_{n}^{(k)}+\tau\left(\log _{n} \Lambda\left(\bar{p}^{(k)}\right)\right)^{b}\right)$
5: $\quad p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F}\left(p^{(k)} \quad\left(-\sigma D \Lambda(m)^{*}\left[\xi_{n}^{(k+1)}\right]\right)^{\sharp}\right)$
6: $\quad \bar{p}^{(k+1)} \leftarrow p^{(k+1)}+\theta\left(p^{(k+1)}-p^{(k)}\right)$
7: $\quad k \leftarrow k+1$
8: end while
Output: $p^{(k)}$

The Exact Riemannian Chambolle-Pock Algorithm (eRCPA)

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021; Chambolle and Pock 2011]
Goal. Minimize $F(p)+G(\Lambda(p))$ with an arbitrary map $\wedge \mathcal{M} \rightarrow \mathcal{N}$.
Input: $m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n=\Lambda(m), \xi_{n}^{(0)} \in \mathcal{T}_{n}^{*} \mathcal{N}$, and parameters $\sigma, \tau, \theta>0$
1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged do
4: $\quad \xi_{n}^{(k+1)} \leftarrow \operatorname{prox}_{\tau} G_{n}^{*}\left(\xi_{n}^{(k)}+\tau\left(\log _{n} \Lambda\left(\bar{p}^{(k)}\right)\right)^{b}\right)$
5: $\quad p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F}\left(p^{(k)} \quad\left(-\sigma D \Lambda(m)^{*}\left[\xi_{n}^{(k+1)}\right]\right)^{\sharp}\right)$
6: $\quad \bar{p}^{(k+1)} \leftarrow p^{(k+1)}+\theta\left(p^{(k+1)}-p^{(k)}\right)$
7: $\quad k \leftarrow k+1$
8: end while
Output: $p^{(k)}$

The Exact Riemannian Chambolle-Pock Algorithm (eRCPA)

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021; Chambolle and Pock 2011]
Goal. Minimize $F(p)+G(\Lambda(p))$ with an arbitrary map $\wedge \mathcal{M} \rightarrow \mathcal{N}$.
Input: $m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n=\Lambda(m), \xi_{n}^{(0)} \in \mathcal{T}_{n}^{*} \mathcal{N}$, and parameters $\sigma, \tau, \theta>0$
1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged do
4: $\quad \xi_{n}^{(k+1)} \leftarrow \operatorname{prox}_{\tau} G_{n}^{*}\left(\xi_{n}^{(k)}+\tau\left(\log _{n} \Lambda\left(\bar{p}^{(k)}\right)\right)^{b}\right)$
5: $\quad p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F}\left(p^{(k)}+\mathrm{P}_{p^{(k)} \leftarrow m}\left(-\sigma D \Lambda(m)^{*}\left[\xi_{n}^{(k+1)}\right]\right)^{\#}\right)$
6: $\quad \bar{p}^{(k+1)} \leftarrow p^{(k+1)}+\theta\left(p^{(k+1)}-p^{(k)}\right)$
7: $\quad k \leftarrow k+1$
8: end while
Output: $p^{(k)}$

The Exact Riemannian Chambolle-Pock Algorithm (eRCPA)

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021; Chambolle and Pock 2011]
Goal. Minimize $F(p)+G(\Lambda(p))$ with an arbitrary map $\wedge \mathcal{M} \rightarrow \mathcal{N}$.
Input: $m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n=\Lambda(m), \xi_{n}^{(0)} \in \mathcal{T}_{n}^{*} \mathcal{N}$, and parameters $\sigma, \tau, \theta>0$
1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged do
4: $\quad \xi_{n}^{(k+1)} \leftarrow \operatorname{prox}_{\tau G_{n}^{*}}\left(\xi_{n}^{(k)}+\tau\left(\log _{n} \Lambda\left(\bar{p}^{(k)}\right)\right)^{b}\right)$
5: $\quad p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F}\left(\exp _{p^{(k)}}\left(\mathrm{P}_{p^{(k)} \leftarrow m}\left(-\sigma D \Lambda(m)^{*}\left[\xi_{n}^{(k+1)}\right]\right)^{\sharp}\right)\right)$
6: $\quad \bar{p}^{(k+1)} \leftarrow p^{(k+1)}+\theta\left(p^{(k+1)}-p^{(k)}\right)$
7: $\quad k \leftarrow k+1$
8: end while
Output: $p^{(k)}$

The Exact Riemannian Chambolle-Pock Algorithm (eRCPA)

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021; Chambolle and Pock 2011]
Goal. Minimize $F(p)+G(\Lambda(p))$ with an arbitrary map $\wedge \mathcal{M} \rightarrow \mathcal{N}$.
Input: $m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n=\Lambda(m), \xi_{n}^{(0)} \in \mathcal{T}_{n}^{*} \mathcal{N}$, and parameters $\sigma, \tau, \theta>0$
1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged do
4: $\quad \xi_{n}^{(k+1)} \leftarrow \operatorname{prox}_{\tau G_{n}^{*}}\left(\xi_{n}^{(k)}+\tau\left(\log _{n} \Lambda\left(\bar{p}^{(k)}\right)\right)^{b}\right)$
5: $\quad p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F}\left(\exp _{p^{(k)}}\left(\mathrm{P}_{p^{(k)} \leftarrow m}\left(-\sigma D \Lambda(m)^{*}\left[\xi_{n}^{(k+1)}\right]\right)^{\sharp}\right)\right)$
6: $\quad \bar{p}^{(k+1)} \leftarrow p^{(k+1)}-\theta\left(p^{(k)}-p^{(k+1)}\right)$
7: $\quad k \leftarrow k+1$
8: end while
Output: $p^{(k)}$

The Exact Riemannian Chambolle-Pock Algorithm (eRCPA)

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021; Chambolle and Pock 2011]
Goal. Minimize $F(p)+G(\Lambda(p))$ with an arbitrary map $\wedge \mathcal{M} \rightarrow \mathcal{N}$.
Input: $m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n=\Lambda(m), \xi_{n}^{(0)} \in \mathcal{T}_{n}^{*} \mathcal{N}$, and parameters $\sigma, \tau, \theta>0$
1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged do
4: $\quad \xi_{n}^{(k+1)} \leftarrow \operatorname{prox}_{\tau} \boldsymbol{G}_{n}^{*}\left(\xi_{n}^{(k)}+\tau\left(\log _{n} \Lambda\left(\bar{p}^{(k)}\right)\right)^{b}\right)$
5: $\quad p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F}\left(\exp _{p^{(k)}}\left(\mathrm{P}_{p^{(k)} \leftarrow m}\left(-\sigma D \Lambda(m)^{*}\left[\xi_{n}^{(k+1)}\right]\right)^{\sharp}\right)\right)$
6: $\quad \bar{p}^{(k+1)} \leftarrow \exp _{p^{(k+1)}}\left(-\theta \log _{p^{(k+1)}} p^{(k)}\right)$
7: $\quad k \leftarrow k+1$
8: end while
Output: $p^{(k)}$

Manifolds.jl \& Manopt.jl

The presented algorithms are implemented within the Julia package Manopt.jl.
The Julia package provides general framework to implement optimisation algorithms on Manifolds (similar to Manopt, pymanopt)
[Boumal, Mishra, Absil, and Sepulchre 2014; Townsend, Koep, and Weichwald 2016]

The algorithms are implemented using on ManifoldsBase.jl, which is an interface for manifolds. A corresponding Library of manifolds is provided in Manifolds.jl.
[Axen, Baran, RB, and Rzecki 2021]

Motivation.

Provide an efficient, well-tested, well-documented Library of Riemannian manifolds.

Numerical Example for a $\mathcal{P}(3)$-valued Image

$\mathcal{P}(3)$-valued data.

anisotropic TV, $\alpha=6$.

- in each pixel we have a symmetric positive definite matrix
- Applications: denoising/inpainting e.g. of DT-MRI data

Numerical Example for a $\mathcal{P}(3)$-valued Image

anisotropic TV, $\alpha=6$.

Approach. CPPA as benchmark [Bačák 2014; RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

	CPPA	PDRA	IRCPA
parameters	$\lambda_{k}=\frac{4}{k}$	$\lambda=0.58$	$\sigma=\tau=0.4$
iterations	4000		
runtime	1235 s.		

Numerical Example for a $\mathcal{P}(3)$-valued Image

Approach. CPPA as benchmark [Băăk 2014; RB, Herzog, Siva Louzeiro, Tenbrinck, and Vidal-Nûñez 2021]

CPPA PDRA IRCPA

parameters	$\lambda_{k}=\frac{4}{k}$	$\lambda=0.58$ $\beta=0.93$	$\sigma=\tau=0.4$ $\gamma=0.2, m=1$
iterations 4000			
runtime	1235 s.		

Numerical Example for a $\mathcal{P}(3)$-valued Image

Approach. CPPA as benchmark [Bačăk 2014; RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Nû́ez 2021]

	CPPA	PDRA	IRCPA
parameters	$\lambda_{k}=\frac{4}{k}$	$\lambda=0.58$	$\sigma=\tau=0.4$
iterations	4000	122	
runtime	1235 s.	380 s.	

Numerical Example for a $\mathcal{P}(3)$-valued Image

Approach. CPPA as benchmark [Bačăk 2014; RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

	CPPA	PDRA	IRCPA
parameters	$\lambda_{k}=\frac{4}{k}$	$\lambda=0.58$	$\sigma=\tau=0.4$
iterations	4000	$\beta=0.93$	$122=0.2, m=1$
runtime	1235 s.	380 s.	$\mathbf{1 1 3}$

Selected References

Axen, S. D., M. Baran, RB, and K. Rzecki (2021). Manifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds. arXiv: 2106.08777.
Bačák, M. (2014). "Computing medians and means in Hadamard spaces". In: SIAM Journal on Optimization 24.3, pp. 1542-1566. DOI: 10.1137/140953393.
RB (2022). "Manopt.jl: Optimization on Manifolds in Julia". In: Journal of Open Source Software 7.70, p. 3866. DOI: $10.21105 /$ joss. 03866.

RB, R. Herzog, and M. Silva Louzeiro (2021). Fenchel duality and a separation theorem on Hadamard manifolds. arXiv: 2102.11155.
RB, R. Herzog, M. Silva Louzeiro, D. Tenbrinck, and J. Vidal-Núñez (Jan. 2021). "Fenchel duality theory and a primal-dual algorithm on Riemannian manifolds". In: Foundations of Computational Mathematics. DOI: 10.1007/s10208-020-09486-5. arXiv: 1908.02022.
E RB, J. Persch, and G. Steidl (2016). "A parallel Douglas Rachford algorithm for minimizing ROF-like functionals on images with values in symmetric Hadamard manifolds". In: SIAM Journal on Imaging Sciences 9.4, pp. 901-937. Doi: 10.1137/15M1052858.
Chambolle, A. and T. Pock (2011). "A first-order primal-dual algorithm for convex problems with applications to imaging". In: Journal of Mathematical Imaging and Vision 40.1, pp. 120-145. DOI: 10.1007/s10851-010-0251-1.

