The Riemannian Chambolle-Pock Algorithm

Ronny Bergmann
joint work with
R. Herzog, M. Silva Louzeiro, D. Tenbrinck, J. Vidal-Núñez.

Jahrestagung der Gesellschaft für angewandte Mathematik und Mechanik,
S21. Mathematical signal and image processing

Manifold-valued Signal \& Image Processing

Tasks in image processing are often phrased as an optimisation problem. Here. The pixel take values on a manifold

- phase-valued data $\left(\mathbb{S}^{1}\right)$
- wind-fields, GPS (\mathbb{S}^{2})
- DT-MRI ($\mathcal{P}(3))$
- EBSD, (grain) orientations (SO(n))

Artificial noisy phase-valued data.

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...

Manifold-valued Signal \& Image Processing

Tasks in image processing are often phrased as an optimisation problem. Here. The pixel take values on a manifold

- phase-valued data $\left(\mathbb{S}^{1}\right)$
- wind-fields, GPS (\mathbb{S}^{2})
- DT-MRI ($\mathcal{P}(3))$
- EBSD, (grain) orientations (SO(n))

InSAR-Data of Mt. Vesuvius.
[Rocca, Prati, and Guarnieri 1997]

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...

Manifold-valued Signal \& Image Processing

Tasks in image processing are often phrased as an optimisation problem. Here. The pixel take values on a manifold

- phase-valued data $\left(\mathbb{S}^{1}\right)$
- wind-fields, GPS (\mathbb{S}^{2})
- DT-MRI ($\mathcal{P}(3))$
- EBSD, (grain) orientations (SO(n))

Artificial noisy data on the sphere \mathbb{S}^{2}.

Tasks. Denoising, Inpainting, labeling (classification), deblurring, ...

Manifold-valued Signal \& Image Processing

Tasks in image processing are often phrased as an optimisation problem. Here. The pixel take values on a manifold

- phase-valued data $\left(\mathbb{S}^{1}\right)$
- wind-fields, GPS (\mathbb{S}^{2})
- DT-MRI ($\mathcal{P}(3))$
- EBSD, (grain) orientations (SO(n))

Artificial diffusion data, each pixel is a symmetric positive matrix.

Tasks. Denoising, Inpainting, labeling (classification), deblurring, ...

Manifold-valued Signal \& Image Processing

Tasks in image processing are often phrased as an optimisation problem. Here. The pixel take values on a manifold

- phase-valued data $\left(\mathbb{S}^{1}\right)$
- wind-fields, GPS (\mathbb{S}^{2})
- DT-MRI ($\mathcal{P}(3))$
- EBSD, (grain) orientations (SO(n))

DT-MRI of the human brain.
Camino Profject: cmic.cs.ucl.ac.uk/camino

Tasks. Denoising, Inpainting, labeling (classification), deblurring, ...

Manifold-valued Signal \& Image Processing

Tasks in image processing are often phrased as an optimisation problem. Here. The pixel take values on a manifold

- phase-valued data $\left(\mathbb{S}^{1}\right)$
- wind-fields, GPS (\mathbb{S}^{2})
- DT-MRI ($\mathcal{P}(3))$
- EBSD, (grain) orientations (SO(n))

Grain orientations in EBSD data.
MTEX toolbox: mtex-toolbox.github.io

Tasks. Denoising, Inpainting, labeling (classification), deblurring, ...

A dimensional Riemannian manifold \mathcal{M}

Notation.

- Geodesic $\gamma(\because ; \boldsymbol{p}, \boldsymbol{q})$
- Tangent space $\mathcal{T}_{p} \mathcal{M}$
- inner product $(\cdot, \cdot)_{p}$
- Logarithmic map $\log _{p} q=\dot{\gamma}(0 ; p, q)$
- Exponential map $\exp _{p} X=\gamma_{p, X}(1)$ where $\gamma_{p, X}(0)=p$ and $\dot{\gamma}_{p, X}(0)=X$

- Parallel transport $\mathrm{P}_{q \leftarrow p} Y$ "move" tangent vectors from $\mathcal{T}_{p} \mathcal{M}$ to $\mathcal{T}_{q} \mathcal{M}$

The Model

We consider a minimization problem

$$
\underset{p \in \mathcal{C}}{\arg \min } F(p)+G(\Lambda(p))
$$

- \mathcal{M}, \mathcal{N} are (high-dimensional) Riemannian Manifolds
- $F: \mathcal{M} \rightarrow \overline{\mathbb{R}}$ nonsmooth, (locally, geodesically) convex
- $G: \mathcal{N} \rightarrow \overline{\mathbb{R}}$ nonsmooth, (locally) convex
- $\wedge: \mathcal{M} \rightarrow \mathcal{N}$ nonlinear
- $\mathcal{C} \subset \mathcal{M}$ strongly geodesically convex.

In image processing. choose a model, such that finding a minimizer yields the reconstruction

Splitting Methods \& Algorithms

On a Riemannian manifold \mathcal{M} we have

- Cyclic Proximal Point Algorithm (CPPA)
- (parallel) Douglas-Rachford Algorithm (PDRA)

On \mathbb{R}^{n} PDRA is known to be equivalent to

- Primal-Dual Hybrid Gradient Algorithm (PDHGA) [Esser, Zhang, and Chan 2010]
- Chambolle-Pock Algorithm (CPA)
[Chambolle and Pock 2011; Pock, Cremers, Bischof, and Chambolle 2009]
But on a Riemannian manifold \mathcal{M} : Δ no duality theory!
Goals of this talk.
Formulate Duality on a Manifold
Derive a Riemannian Chambolle-Pock Algorithm (RCPA)

The Euclidean Fenchel Conjugate

Let $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be proper and convex. We define the Fenchel conjugate $f^{*}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ of f by

$$
f^{*}(\xi):=\sup _{x \in \mathbb{R}^{n}}\langle\xi, x\rangle-f(x)=\sup _{x \in \mathbb{R}^{n}}\binom{\xi}{-1}^{\top}\binom{x}{f(x)}
$$

- interpretation: maximize the distance of $\xi^{\top} x$ to f
\Rightarrow extremum seeking problem on the epigraph
The Fenchel biconjugate reads

$$
f^{* *}(x)=\left(f^{*}\right)^{*}(x)=\sup _{\xi \in \mathbb{R}^{n}}\langle\xi, x\rangle-f^{*}(\xi) .
$$

Illustration of the Fenchel Conjugate

NTNU

The Fenchel conjugate f^{*}

Properties of the Euclidean Fenchel Conjugate

- The Fenchel conjugate f^{*} is convex (even if f is not)
- $f^{* *}$ is the largest convex, Isc function with $f^{* *} \leq f$
- If $f(x) \leq g(x)$ holds for all $x \in \mathbb{R}^{n}$ then $f^{*}(\xi) \geq g^{*}(\xi)$ holds for all $\xi \in \mathbb{R}^{n}$
- Fenchel-Moreau theorem: f convex, proper, Isc $\Rightarrow f^{* *}=f$.
- Fenchel-Young inequality:

$$
f(x)+f^{*}(\xi) \geq \xi^{\top} x \quad \text { for all } \quad x, \xi \in \mathbb{R}^{n}
$$

- For a proper, convex function f

$$
\xi \in \partial f(x) \Leftrightarrow f(x)+f^{*}(\xi)=\xi^{\top} x
$$

- For a proper, convex, Isc function f, then

$$
\xi \in \partial f(x) \Leftrightarrow x \in \partial f^{*}(\xi)
$$

The Riemannian m-Fenchel Conjugate

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]
alternative approaches: [Ahmadi Kakavandi and Amini 2010; Silva Louzeiro, RB, and Herzog 2022]
Idea: Introduce a point on \mathcal{M} to "act as" 0 .
Let $m \in \mathcal{C} \subset \mathcal{M}$ be given and $F: \mathcal{C} \rightarrow \overline{\mathbb{R}}$.
The m-Fenchel conjugate $F_{m}^{*}: \mathcal{T}_{m}^{*} \mathcal{M} \rightarrow \overline{\mathbb{R}}$ is defined by

$$
F_{m}^{*}\left(\xi_{m}\right):=\sup _{X \in \mathcal{L}_{\mathcal{C}, m}}\left\{\left\langle\xi_{m}, X\right\rangle-F\left(\exp _{m} X\right)\right\},
$$

where $\mathcal{L}_{\mathcal{C}, m}:=\left\{X \in \mathcal{T}_{m} \mathcal{M} \mid q=\exp _{m} X \in \mathcal{C}\right.$ and $\left.\|X\|_{p}=d(q, p)\right\}$.
Let $m^{\prime} \in \mathcal{C}$. The $m m^{\prime}$-Fenchel-biconjugate $F_{m m^{\prime}}^{* *}: \mathcal{C} \rightarrow \overline{\mathbb{R}}$ is given by

$$
F_{m m^{\prime}}^{* *}(p)=\sup _{\xi_{m^{\prime}} \in \mathcal{T}_{m^{\prime}}^{*} \mathcal{M}}\left\{\left\langle\xi_{m^{\prime}}, \log _{m^{\prime}} p\right\rangle-F_{m}^{*}\left(\mathrm{P}_{m \leftarrow m^{\prime}} \xi_{m^{\prime}}\right)\right\}
$$

usually we only use the case $m=m^{\prime}$.

Properties of the m-Fenchel Conjugate

- F_{m}^{*} is convex on $\mathcal{T}_{m}^{*} \mathcal{M}$
- $F(p) \leq G(p)$ holds for all $p \in \mathcal{C} \Rightarrow F_{m}^{*}\left(\xi_{m}\right) \geq G_{m}^{*}\left(\xi_{m}\right)$ holds for all $\xi_{m} \in \mathcal{T}_{m}^{*} \mathcal{M}$
- Fenchel-Moreau theorem: $F \circ \exp _{m}$ convex (on $\mathcal{T}_{m} \mathcal{M}$), proper, Isc, then $F_{m m}^{* *}=F$ on \mathcal{C}.
- Fenchel-Young inequality: For a proper, convex function $F \circ \exp _{m}$

$$
\xi_{p} \in \partial_{\mathcal{M}} F(p) \Leftrightarrow F(p)+F_{m}^{*}\left(\mathrm{P}_{m \leftarrow p} \xi_{p}\right)=\left\langle\mathrm{P}_{m \leftarrow p} \xi_{p}, \log _{m} p\right\rangle .
$$

- For a proper, convex, Isc function $F \circ \exp _{m}$

$$
\xi_{p} \in \partial_{\mathcal{M}} F(p) \Leftrightarrow \log _{m} p \in \partial F_{m}^{*}\left(\mathrm{P}_{m \leftarrow p} \xi_{p}\right) .
$$

Proximal Map

For $F: \mathcal{M} \rightarrow \overline{\mathbb{R}}$ and $\lambda>0$ we define the Proximal Map as
[Moreau 1965; Rockafellar 1970; Ferreira and Oliveira 2002]

$$
\operatorname{prox}_{\lambda F} p:=\underset{u \in \mathcal{M}}{\arg \min } d(u, p)^{2}+\lambda F(u) .
$$

! For a Minimizer u^{*} of F we have $\operatorname{prox}_{\lambda F} u^{*}=u^{*}$.

- For F proper, convex, Isc:
- the proximal map is unique.
- Proximal-Point-Algorithm:
$x_{k}=\operatorname{prox}_{\lambda F} x_{k-1}$ converges to $\arg \min F$
- $q=\operatorname{prox}_{\lambda F} p$ is equivalent to

$$
\frac{1}{\lambda}\left(\log _{q} p\right)^{b} \in \partial_{\mathcal{M}} F(q)
$$

The Exact Riemannian Chambolle-Pock Algorithm (eRCPA)

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]
Input: $m, p^{(0)} \in \mathbb{R}^{d} \quad, n=\Lambda(m), \xi_{n}^{(0)} \in \mathbb{R}^{d}$, and parameters $\sigma, \tau, \theta>0$
1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged do
4: $\quad \xi_{n}^{(k+1)} \leftarrow \operatorname{prox}_{\tau}{G_{n}^{*}}^{(}\left(\xi_{n}^{(k)}+\tau\left(\log _{n} \Lambda\left(\bar{p}^{(k)}\right)\right)^{b}\right)$
5: $\quad p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma F}\left(p^{(k)}+\mathrm{P}_{p^{(k)} \leftarrow m}\left(-\sigma D \Lambda(m)^{*}\left[\xi_{n}^{(k+1)}\right]\right)^{\sharp}\right)$
6: $\quad \bar{p}^{(k+1)} \leftarrow p^{(k+1)}+\theta\left(p^{(k+1)}-p^{(k)}\right)$
7: $\quad k \leftarrow k+1$
8: end while
Output: $p^{(k)}$

Generalizations \& Variants of the RCPA

Classically

- change $\sigma=\sigma_{k}, \tau=\tau_{k}, \theta=\theta_{k}$ during the iterations
- introduce an acceleration γ
- relax dual $\bar{\xi}$ instead of primal \bar{p} (switches lines 4 and 5)

Furthermore we
[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

- introduce the IRCPA: linearize Λ, i. e., adopt the Euclidean case from
[Valkonen 2014]

$$
\log _{n} \Lambda\left(\bar{p}^{(k)}\right) \quad \rightarrow \quad \mathrm{P}_{n \leftarrow \Lambda(m)} D \Lambda(m)\left[\log _{m} \bar{p}^{(k)}\right]
$$

- choose $n \neq \Lambda(m)$ introduces a parallel transport

$$
D \Lambda(m)^{*}\left[\xi_{n}^{(k+1)}\right] \quad \rightarrow \quad D \Lambda(m)^{*}\left[P_{\Lambda(m) \leftarrow n} \xi_{n}^{(k+1)}\right]
$$

- change $m=m^{(k)}, n=n^{(k)}$ during the iterations

Manopt.jl: Optimisation on Manifolds in Julia

Goal. Provide optimisation algorithms on Riemannian manifolds, i.e. based on ManifoldsBase.jl such that it can be used with all manifolds from Manifolds.jl.

Features.

- generic algorithm framework:

With Problem P and Options 0

- initialize_solver! (P, 0)
- step_solver! (P, O, i): ith step
Θ run algorithm: call solve $(P, 0)$
- generic debug and recording
- step sizes and stopping criteria.

Manopt Family.manoptjl.org
[RB 2022]
A manopt.org [Boumal, Mishra, Absil, and Sepulchre 2014]
pymanopt.org [Townsend, Koep, and Weichwald 2016]

Algoirthms.

- Gradient Descent CG, Stochastic, Momentum, ...
- Quasi-Newton BFGS, DFP, Broyden, SR1, ...
- Nelder-Mead, Particle Swarm
- Subgradient Method
- Trust Regions
- Chambolle-Pock
- Douglas-Rachford
- Cyclic Proximal Point

The ℓ^{2}-TV Model

[Rudin, Osher, and Fatemi 1992; Lellmann, Strekalovskiy, Koetter, and Cremers 2013; Weinmann, Demaret, and Storath 2014] For a manifold-valued image $f \in \mathcal{M}, \mathcal{M}=\mathcal{N}^{d_{1}, d_{2}}$, we compute

$$
\underset{p \in \mathcal{M}}{\arg \min } \frac{1}{\alpha} F(p)+G(\Lambda(p)), \quad \alpha>0
$$

with

- data term $F(p)=\frac{1}{2} d_{\mathcal{M}}^{2}(p, f)$
- "forward differences" $\wedge: \mathcal{M} \rightarrow(T \mathcal{M})^{d_{1}-1, d_{2}-1,2}$,

$$
p \mapsto \Lambda(p)=\left(\left(\log _{p_{i}} p_{i+e_{1}}, \log _{p_{i}} p_{i+e_{2}}\right)\right)_{i \in\left\{1, \ldots, d_{1}-1\right\} \times\left\{1, \ldots, d_{2}-1\right\}}
$$

- prior $G(X)=\|X\|_{g, q, 1}$ similar to a collaborative TVburan, Moeller, Sbert, and Cremers 2016]
$\Rightarrow \operatorname{prox}_{\lambda G_{n}^{*}}$ given in closed form for $q=1$ (anisotropic TV) and $q=2$ (isotropic TV).

Numerical Example for a $\mathcal{P}(3)$-valued Image

$\mathcal{P}(3)$-valued data.

anisotropic TV, $\alpha=6$.

- in each pixel we have a symmetric positive definite matrix
- Applications: denoising/inpainting e.g. of DT-MRI data

Numerical Example for a $\mathcal{P}(3)$-valued Image

$$
\text { anisotropic TV, } \alpha=6
$$

Approach. CPPA as benchmark [Bačák 2014; RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

	CPPA	PDRA	$\\| R C P A$
parameters	$\lambda_{k}=\frac{4}{k}$	$\lambda=0.58$	$\sigma=\tau=0.4$
iterations	4000	$\beta=0.93$	$\gamma=0.2, m=I$
runtime	1235 s.	380 s.	$\mathbf{9 6 . 1} \mathbf{s .}$

Numerical Example for a $\mathcal{P}(3)$-valued Image

Approach. CPPA as benchmark [Bacăk 2014; RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Nữée 2021]

	CPPA	PDRA	IRCPA
parameters	$\lambda_{k}=\frac{4}{k}$	$\lambda=0.58$	$\sigma=\tau=0.4$
iterations	4000	122	$\gamma=0.2, m=1$
runtime	1235 s.	380 s.	$\mathbf{1 1 3}$

Summary

Summary.

- We introduced a duality framework on manifolds
- we introduced a Riemannian Chambolle-Pock algorithm
- We saw a Software framework for Optimisation algorithms on manifolds
- Numerical examples illustrates its performance

Further.

- A Fenchel Conjugate can be defined on $T \mathcal{M}$ \Rightarrow (hyperplane) separation Theorem
- Extended to semi-smooth Newrton

Outlook.

- Strategies for choosing base points, investigate $C(k)$
- Investigate constraint optimisation on Manifolds
- look into further applications

Selected References

Axen, S. D., M. Baran, RB, and K. Rzecki (2021). Manifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds. arXiv: 2106.08777.
E RB (2022). "Manopt.jl: Optimization on Manifolds in Julia". In: Journal of Open Source Software 7.70, p. 3866. DOI: $10.21105 /$ joss. 03866.

RB, R. Herzog, and M. Silva Louzeiro (2021). Fenchel duality and a separation theorem on Hadamard manifolds. arXiv: 2102.11155.
RB, R. Herzog, M. Silva Louzeiro, D. Tenbrinck, and J. Vidal-Núñez (Jan. 2021). "Fenchel duality theory and a primal-dual algorithm on Riemannian manifolds". In: Foundations of Computational Mathematics. DOI: 10.1007/s10208-020-09486-5. arXiv: 1908.02022.

RB, J. Persch, and G. Steidl (2016). "A parallel Douglas Rachford algorithm for minimizing ROF-like functionals on images with values in symmetric Hadamard manifolds". In: SIAM Journal on Imaging Sciences 9.4, pp. 901-937. Doi: 10.1137/15M1052858.
Chambolle, A. and T. Pock (2011). "A first-order primal-dual algorithm for convex problems with applications to imaging". In: Journal of Mathematical Imaging and Vision 40.1, pp. 120-145. Dor: 10.1007/s10851-010-0251-1.

Diepeveen, W. and J. Lellmann (2021). "An Inexact Semismooth Newton Method on Riemannian Manifolds with Application to Duality-Based Total Variation Denoising". In: SIAM Journal on Imaging Sciences 14.4, pp. 1565-1600. DOI: 10.1137/21m1398513.

