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Manifold-valued Signal & Image Processing
Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

Artificial noisy phase-valued data.

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...



2

Manifold-valued Signal & Image Processing
Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

InSAR-Data of Mt. Vesuvius.
[Rocca, Prati, and Guarnieri 1997]

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...
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Manifold-valued Signal & Image Processing
Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

Artificial noisy data on the sphere S2.

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...
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Manifold-valued Signal & Image Processing
Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

Artificial diffusion data,
each pixel is a symmetric positive matrix.

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...
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Manifold-valued Signal & Image Processing
Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

DT-MRI of the human brain.
Camino Profject: cmic.cs.ucl.ac.uk/camino

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...

http://cmic.cs.ucl.ac.uk/camino
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Manifold-valued Signal & Image Processing
Tasks in image processing are often phrased as an optimisation problem.
Here. The pixel take values on a manifold

▶ phase-valued data (S1)
▶ wind-fields, GPS (S2)
▶ DT-MRI (P(3))
▶ EBSD, (grain) orientations (SO(n))

Grain orientations in EBSD data.
MTEX toolbox: mtex-toolbox.github.io

Tasks. Denoising, Inpainting, labeling (classification), deblurring,...

https://mtex-toolbox.github.io
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A d-dimensional Riemannian manifold M

Notation.
▶ Geodesic γ(·; p , q)
▶ Tangent space TpM
▶ inner product (· , ·)p
▶ Logarithmic map logp q = γ̇(0; p, q)
▶ Exponential map expp X = γp,X(1)

where γp,X(0) = p and γ̇p,X(0) = X
▶ Parallel transport Pq←pY “move”

tangent vectors from TpM to TqM

γ(·; p , q)p q

expp
logp

X
logp p

TpM

M

Y
Pq←pY
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The Model

We consider a minimization problem

argmin
p∈C

F(p) + G(Λ(p))

▶ M,N are (high-dimensional) Riemannian Manifolds
▶ F :M→ R nonsmooth, (locally, geodesically) convex
▶ G : N → R nonsmooth, (locally) convex
▶ Λ:M→N nonlinear
▶ C ⊂M strongly geodesically convex.

In image processing.
choose a model, such that finding a minimizer yields the reconstruction
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Splitting Methods & Algorithms
On a Riemannian manifold M we have
▶ Cyclic Proximal Point Algorithm (CPPA) [Bačák 2014]

▶ (parallel) Douglas–Rachford Algorithm (PDRA) [RB, Persch, and Steidl 2016]

On Rn PDRA is known to be equivalent to [Setzer 2011; O’Connor and Vandenberghe 2018]

▶ Primal-Dual Hybrid Gradient Algorithm (PDHGA) [Esser, Zhang, and Chan 2010]

▶ Chambolle-Pock Algorithm (CPA)
[Chambolle and Pock 2011; Pock, Cremers, Bischof, and Chambolle 2009]

But on a Riemannian manifold M: no duality theory!

Goals of this talk.
Formulate Duality on a Manifold
Derive a Riemannian Chambolle–Pock Algorithm (RCPA)
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Musical Isomorphisms

[Lee 2003]

The dual space T ∗pM of a tangent space TpM is called cotangent space.
We denote by 〈· , ·〉 the duality pairing.

We define the musical isomorphisms
▶ ♭ : TpM3 X 7→ X♭ ∈ T ∗pM via 〈X♭ ,Y〉 = (X , Y)p for all Y ∈ TpM
▶ ♯ : T ∗pM3 ξ 7→ ξ♯ ∈ TpM via (ξ♯ , Y)p = 〈ξ ,Y〉 for all Y ∈ TpM.

which introduces an inner product and parallel transport on/between T ∗pM
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(Geodesic) Convexity

[Sakai 1996; Udrişte 1994]

A set C ⊂M is called (strongly geodesically) convex
if for all p, q ∈ C the geodesic γ(·; p , q) is unique and lies in C.

A function F : C → R is called (geodesically) convex
if for all p, q ∈ C the composition F(γ(t; p , q)), t ∈ [0, 1], is convex.
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The Subdifferential

The subdifferential of F at p ∈ C is given by [Lee 2003; Udrişte 1994]

∂MF(p) :=
{
ξ ∈ T ∗pM

∣∣F(q) ≥ F(p) + 〈ξ , logp q〉 for q ∈ C
}
,

where
▶ T ∗pM is the dual space of TpM,
▶ 〈· , ·〉 denotes the duality pairing on T ∗pM×TpM
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The Euclidean Fenchel Conjugate

Let f : Rn → R be proper and convex.
We define the Fenchel conjugate f ∗ : Rn → R of f by

f ∗(ξ) := sup
x∈Rn
〈ξ, x〉 − f(x) = sup

x∈Rn

(
ξ
−1

)T (
x

f(x)

)

▶ interpretation: maximize the distance of ξTx to f
⇒ extremum seeking problem on the epigraph

The Fenchel biconjugate reads

f ∗ ∗(x) = (f ∗) ∗(x) = sup
ξ∈Rn
〈ξ , x〉 − f ∗(ξ).
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Illustration of the Fenchel Conjugate

−1 1 2
−1

1

2

3

4

f∗(ξ)

−f∗(ξ)

x

f(x)
The function f

−4 −2 2

−1

−0.5

0.5

1

ξ

f∗(ξ)
The Fenchel conjugate f∗
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Properties of the Euclidean Fenchel Conjugate
[Rockafellar 1970]

▶ The Fenchel conjugate f∗ is convex (even if f is not)
▶ f∗∗ is the largest convex, lsc function with f∗∗ ≤ f
▶ If f(x) ≤ g(x) holds for all x ∈ Rn then f∗(ξ) ≥ g∗(ξ) holds for all ξ ∈ Rn

▶ Fenchel–Moreau theorem: f convex, proper, lsc ⇒ f∗∗ = f.
▶ Fenchel–Young inequality:

f(x) + f∗(ξ) ≥ ξTx for all x, ξ ∈ Rn

▶ For a proper, convex function f

ξ ∈ ∂f(x)⇔ f(x) + f∗(ξ) = ξTx

▶ For a proper, convex, lsc function f, then

ξ ∈ ∂f(x)⇔ x ∈ ∂f∗(ξ)
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The Riemannian m−Fenchel Conjugate
[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

alternative approaches: [Ahmadi Kakavandi and Amini 2010; Silva Louzeiro, RB, and Herzog 2022]

Idea: Introduce a point on M to “act as” 0.

Let m ∈ C ⊂M be given and F : C → R.
The m-Fenchel conjugate F∗m : T ∗mM→ R is defined by

F∗m(ξm) := sup
X∈LC,m

{
〈ξm ,X〉 − F(expm X)

}
,

where LC,m := {X ∈ TmM | q = expm X ∈ C and ‖X‖p = d(q, p)}.

Let m′ ∈ C. The mm′-Fenchel-biconjugate F∗∗mm′ : C → R is given by

F∗∗mm′(p) = sup
ξm′∈T ∗

m′M

{
〈ξm′ , logm′ p〉 − F∗m(Pm←m′ξm′)

}
.

usually we only use the case m = m′.
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Properties of the m-Fenchel Conjugate
[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

▶ F∗m is convex on T ∗mM
▶ F(p) ≤ G(p) for all p ∈ C ⇒ F∗m(ξm) ≥ G∗m(ξm) for all ξm ∈ T ∗mM
▶ Fenchel-Moreau theorem: F ◦ expm convex (on TmM), proper, lsc,

then F∗∗mm = F on C.
▶ Fenchel-Young inequality: For a proper, convex function F ◦ expm

ξp ∈ ∂MF(p)⇔ F(p) + F∗m(Pm←pξp) = 〈Pm←pξp , logm p〉.

▶ For a proper, convex, lsc function F ◦ expm

ξp ∈ ∂MF(p)⇔ logm p ∈ ∂F∗m(Pm←pξp).
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Proximal Map

For F :M→ R and λ > 0 we define the Proximal Map as
[Moreau 1965; Rockafellar 1970; Ferreira and Oliveira 2002]

proxλF p := argmin
u∈M

d(u, p)2 + λF(u).

! For a Minimizer u∗ of F we have proxλF u∗ = u∗.
▶ For F proper, convex, lsc:

▶ the proximal map is unique.
▶ Proximal-Point-Algorithm:

xk = proxλF xk−1 converges to argminF
▶ q = proxλF p is equivalent to

1
λ

(
logq p

)♭ ∈ ∂MF(q)
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The Chambolle-Pock Algorithm
[Chambolle and Pock 2011]

From the pair of primal-dual problems

min
x∈Rn

f(x) + g(Kx), K linear,

max
ξ∈Rm

− f ∗(−K∗ξ)− g∗(ξ)

we obtain for f, g proper convex, lsc the
optimality conditions (OC) for a solution (x̂, ξ̂) as ,
Chambolle–Pock Algorithm. with σ > 0, τ > 0, θ ∈ R reads

∂f 3 −K∗ξ̂
∂g∗(ξ̂)3 Kx̂
ξ̄(k+1) = ξ(k+1) + θ(ξ(k+1) − ξ(k))
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Saddle Point Formulation
Let F be geodesically convex, G ◦ expn be convex (on TnN ).

From
min
p∈C

F(p) + G(Λ(p))

we derive the saddle point formulation for the n-Fenchel conjugate of G as

min
p∈C

max
ξn∈T ∗nN

〈ξn , logn Λ(p)〉+ F(p)− G∗n(ξn).

But Λ:M→N is a non-linear operator!

For Optimality Conditions and the Dual Prolem: What’s Λ∗?

Approach. Linearization: [Valkonen 2014]

Λ(p) ≈ expΛ(m) DΛ(m)[logm p]
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The Exact Riemannian Chambolle–Pock Algorithm (eRCPA)

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

Input: m, p(0) ∈ Rd , n = Λ(m), ξ(0)n ∈ Rd , and parameters σ, τ, θ > 0
1: k← 0
2: p̄(0) ← p(0)
3: while not converged do
4: ξ

(k+1)
n ← proxτG∗n

(
ξ
(k)
n + τ

(
logn Λ(p̄(k))

)
♭
)

5: p(k+1) ← proxσF

(
p(k) + Pp(k)←m

(
− σDΛ(m)∗[ξ

(k+1)
n ]

)♯ )
6: p̄(k+1) ← p(k+1)+ θ(p(k+1) − p(k))
7: k← k + 1
8: end while

Output: p(k)
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Generalizations & Variants of the RCPA
Classically

[Chambolle and Pock 2011]

▶ change σ = σk, τ = τk, θ = θk during the iterations
▶ introduce an acceleration γ

▶ relax dual ξ̄ instead of primal p̄ (switches lines 4 and 5)
Furthermore we [RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

▶ introduce the lRCPA: linearize Λ, i. e., adopt the Euclidean case from
[Valkonen 2014]

logn Λ(p̄(k)) → Pn←Λ(m)DΛ(m)[logm p̄(k)]
▶ choose n 6= Λ(m) introduces a parallel transport

DΛ(m)∗[ξ
(k+1)
n ] → DΛ(m)∗[PΛ(m)←nξ

(k+1)
n ]

▶ change m = m(k), n = n(k) during the iterations
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A Constant and a Conjecture

We define
C(k) := 1

σ
d2(p(k), p̃(k)) + 〈ξ̄(k)n ,DΛ(m)[ζk]〉,

where

ζk = Pm←p(k)
(
logp(k) p(k+1) − Pp(k)←p̃(k) logp̃(k) p̂

)
− logm p(k+1) + logm p̂,

and p̂ is a minimizer of the primal problem.
Remark.
For M = Rd: ζk = p̃(k) − p(k) = −σ(DΛ(m))∗[ξ̄

(k)
n ]⇒ C(k) = 0.

Conjecture.
Assume στ < ‖DΛ(m)‖2. Then C(k) ≥ 0 for all k > K, K ∈ N.
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Convergence of the lRCPA

Theorem. [RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

Let M, N be Hadamard. Assume that the linearized problem

min
p∈M

max
ξn∈T ∗nN

〈(DΛ(m))∗[ξn] , logm p〉+ F(p)− G∗n(ξn).

has a saddle point (p̂, ξ̂n).
Choose σ, τ such that

στ < ‖DΛ(m)‖2

and assume that C(k) ≥ 0 for all k > K. Then it holds
1. the sequence (p(k), ξ(k)n ) remains bounded,
2. there exists a saddle-point (p′, ξ′n) such that p(k) → p′ and ξ

(k)
n → ξ′n.
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Manopt.jl: Optimisation on Manifolds in Julia
Goal. Provide optimisation algorithms on Riemannian manifolds,
based on ManifoldsBase.jl & works any manifold from Manifolds.jl.

Features.
▶ generic algorithm framework:

With Problem P and Options O
▶ initialize_solver!(P,O)
▶ step_solver!(P, O, i): ith step

run algorithm: call solve(P,O)

▶ generic debug and recording
▶ step sizes and stopping criteria.

Manopt Family.
manoptjl.org [RB 2022]

manopt.org [Boumal, Mishra, Absil, and Sepulchre 2014]

pymanopt.org [Townsend, Koep, and Weichwald 2016]

Algoirthms.
▶ Gradient Descent

CG, Stochastic, Momentum, ...
▶ Quasi-Newton

BFGS, DFP, Broyden, SR1, ...
▶ Nelder-Mead, Particle Swarm
▶ Subgradient Method
▶ Trust Regions
▶ Chambolle-Pock
▶ Douglas-Rachford
▶ Cyclic Proximal Point

https://www.manoptjl.org
https://www.manopt.org
https://pymanopt.org
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The ℓ2-TV Model
[Rudin, Osher, and Fatemi 1992; Lellmann, Strekalovskiy, Koetter, and Cremers 2013; Weinmann, Demaret, and Storath 2014]

For a manifold-valued image f ∈M, M = N d1,d2 , we compute

argmin
p∈M

1
α

F(p) + G(Λ(p)), α > 0,

with
▶ data term F(p) = 1

2d2
M(p, f)

▶ “forward differences” Λ:M→ (TM)d1−1, d2−1, 2,

p 7→ Λ(p) =
(
(logpi pi+e1 , logpi pi+e2)

)
i∈{1,...,d1−1}×{1,...,d2−1}

▶ prior G(X) = ‖X‖g,q,1 similar to a collaborative TV[Duran, Moeller, Sbert, and Cremers 2016]

⇒ proxλG∗n
given in closed form for q = 1 (anisotropic TV) and q = 2

(isotropic TV).
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Numerical Example for a P(3)-valued Image

P(3)-valued data. anisotropic TV, α = 6.
▶ in each pixel we have a symmetric positive definite matrix
▶ Applications: denoising/inpainting e.g. of DT-MRI data



23

Numerical Example for a P(3)-valued Image

P(3)-valued data. anisotropic TV, α = 6.

Approach. CPPA as benchmark [Bačák 2014; RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

CPPA PDRA lRCPA

parameters λk = 4
k λ = 0.58 σ = τ = 0.4

β = 0.93 γ = 0.2, m = I
iterations 4000 122 113
runtime 1235 s. 380 s. 96.1 s.
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Numerical Example for a P(3)-valued Image

1 10 100 1,000
40

60

80

Iterations

Co
st

38.74
CPPA
PDRA
lRCPA

Approach. CPPA as benchmark [Bačák 2014; RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

CPPA PDRA lRCPA

parameters λk = 4
k λ = 0.58 σ = τ = 0.4

β = 0.93 γ = 0.2, m = I
iterations 4000 122 113
runtime 1235 s. 380 s. 96.1 s.
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Basepoint Effect on S2-valued Data

Original data Result, m west (per px.)
▶ pieceweise constant results for both
! different linearizations lead to different models
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Basepoint Effect on S2-valued Data

Result, m mean (per px.) Result, m west (per px.)

50 100 150 200 250 300
1,400

1,600

1,800

2,000

Iterations

Co
st

mean
west
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Summary

Summary.
▶ We introduced a duality framework on manifolds
▶ we introduced a Riemannian Chambolle–Pock algorithm
▶ We saw a Software framework for Optimisation algorithms on manifolds
▶ Numerical examples illustrates its performance

Outlook.
▶ Strategies for choosing base points, investigate C(k)
▶ Investigate constraint optimisation on Manifolds
▶ look into further applications
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