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Manifold-Valued Signals and Images
New data acquisition modalities lead to non-Euclidean range
▶ Interferometric synthetic aperture radar

(InSAR)
▶ Surface normals,

GPS data, wind, flow,...
▶ Diffusion tensors in magnetic resonance

imaging (DT-MRI),
covariance matrices

▶ Electron backscattered
diffraction (EBSD)
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InSAR-Data of Mt. Vesuvius
[Rocca, Prati, and Guarnieri 1997]

phase-valued data, M = S1
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Manifold-Valued Signals and Images
New data acquisition modalities lead to non-Euclidean range
▶ Interferometric synthetic aperture radar

(InSAR)
▶ Surface normals,

GPS data, wind, flow,...
▶ Diffusion tensors in magnetic resonance

imaging (DT-MRI),
covariance matrices

▶ Electron backscattered
diffraction (EBSD)

National elevation dataset
[Gesch, Evans, Mauck, Hutchinson, and Carswell Jr 2009]

directional data, M = S2

2



Manifold-Valued Signals and Images
New data acquisition modalities lead to non-Euclidean range
▶ Interferometric synthetic aperture radar

(InSAR)
▶ Surface normals,

GPS data, wind, flow,...
▶ Diffusion tensors in magnetic resonance

imaging (DT-MRI),
covariance matrices

▶ Electron backscattered
diffraction (EBSD)

diffusion tensors in human brain
from the Camino dataset

http://cmic.cs.ucl.ac.uk/camino
sym. pos. def. matrices, M = SPD(3)
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Manifold-Valued Signals and Images
New data acquisition modalities lead to non-Euclidean range
▶ Interferometric synthetic aperture radar

(InSAR)
▶ Surface normals,

GPS data, wind, flow,...
▶ Diffusion tensors in magnetic resonance

imaging (DT-MRI),
covariance matrices

▶ Electron backscattered
diffraction (EBSD)

horizontal slice # 28
from the Camino dataset

http://cmic.cs.ucl.ac.uk/camino
sym. pos. def. matrices, M = SPD(3)
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Manifold-Valued Signals and Images
New data acquisition modalities lead to non-Euclidean range
▶ Interferometric synthetic aperture radar

(InSAR)
▶ Surface normals,

GPS data, wind, flow,...
▶ Diffusion tensors in magnetic resonance

imaging (DT-MRI),
covariance matrices

▶ Electron backscattered
diffraction (EBSD)

EBSD example from the MTEX toolbox
Bachmann and Hielscher, since 2007

Rotations (mod. symmetry),
M = SO(3)(/S).
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Manifold-Valued Signals and Images
New data acquisition modalities lead to non-Euclidean range
▶ Interferometric synthetic aperture radar

(InSAR)
▶ Surface normals,

GPS data, wind, flow,...
▶ Diffusion tensors in magnetic resonance

imaging (DT-MRI),
covariance matrices

▶ Electron backscattered
diffraction (EBSD)

Common properties
▶ Range of values is a

Riemannian manifold
▶ Tasks from “classical” image

processing, e.g.
▶ denoising
▶ inpainting
▶ interpolation
▶ labeling
▶ deblurring

2



A d-dimensional Riemannian manifold M

γ(·; p , q)p q

expp
logp

X
logp p

TpM

M

Y
Pq←pY

Geodesic γ(·; p , q)
a shortest path between p, q ∈M

Tangent space TpM at p
with inner product (· , ·)p

Logarithmic map logp q = γ̇(0; p, q)
“speed towards q”

Exponential map expp X = γp,X(1) ,
where γp,X(0) = p and γ̇p,X(0) = X

Parallel transport Pq←pY
from TpM along γ(·; p , q) to TqM

A d-dimensional Riemannian manifold can be informally defined as a set M covered
with a ‘suitable’ collection of charts, that identify subsets of M with open subsets of

Rd and a continuously varying inner product on the tangent spaces.
[Absil, Mahony, and Sepulchre 2008]
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The Model

We consider a minimization problem

argmin
p∈C

F(p) + G(Λ(p))

▶ M,N are (high-dimensional) Riemannian Manifolds
▶ F :M→ R nonsmooth, (locally, geodesically) convex
▶ G : N → R nonsmooth, (locally) convex
▶ Λ:M→N nonlinear
▶ C ⊂M strongly geodesically convex.

In image processing:
choose a model, such that finding a minimizer yields the reconstruction

4



Splitting Methods & Algorithms

On a Riemannian manifold M we have
▶ Cyclic Proximal Point Algorithm (CPPA) [Bačák 2014]

▶ (parallel) Douglas–Rachford Algorithm (PDRA) [RB, Persch, and Steidl 2016]

On Rn PDRA is known to be equivalent to [O’Connor and Vandenberghe 2018; Setzer 2011]

▶ Primal-Dual Hybrid Gradient Algorithm (PDHGA) [Esser, Zhang, and Chan 2010]

▶ Chambolle-Pock Algorithm (CPA) [Chambolle and Pock 2011; Pock, Cremers, Bischof, and Chambolle 2009]

But on a Riemannian manifold M: no duality theory!

Goals of this talk.
Formulate Duality on a Manifold
Derive a Riemannian Chambolle–Pock Algorithm (RCPA)
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The Euclidean Fenchel Conjugate

Let f : Rn → R be proper and convex.
We define the Fenchel conjugate f∗ : Rn → R of f by

f∗(ξ) := sup
x∈Rn
〈ξ, x〉 − f(x) = sup

x∈Rn

(
ξ
−1

)T( x
f(x)

)

▶ interpretation: maximize the distance of ξTx to f
⇒ extremum seeking problem on the epigraph

The Fenchel biconjugate reads

f∗∗(x) = (f∗)∗(x) = sup
ξ∈Rn
{〈ξ , x〉 − f∗(ξ)}.
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Illustration of the Fenchel Conjugate
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The Riemannian m−Fenchel Conjugate
[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

alternative approaches: [Ahmadi Kakavandi and Amini 2010; Silva Louzeiro, RB, and Herzog 2022]

Idea: Introduce a point on M to “act as” 0.
Let m ∈ C ⊂M be given and F : C → R.
The m-Fenchel conjugate F∗m : T ∗mM→ R is defined by

F∗m(ξm) := sup
X∈LC,m

{
〈ξm ,X〉 − F(expm X)

}
,

where LC,m := {X ∈ TmM | q = expm X ∈ C and ‖X‖p = d(q, p)}.

Let m′ ∈ C.
The mm′-Fenchel-biconjugate F∗∗mm′ : C → R is given by

F∗∗mm′(p) = sup
ξm′∈T ∗

m′M

{
〈ξm′ , logm′ p〉 − F∗m(Pm←m′ξm′)

}
.

usually we only use the case m = m′.
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The Euclidean Chambolle–Pock Algorithm
[Chambolle and Pock 2011]

From the pair of primal-dual problems

min
x∈Rn

f(x) + g(Kx), K linear,

max
ξ∈Rm

− f∗(−K∗ξ)− g∗(ξ)

we obtain for f, g proper convex, lsc the
optimality conditions (OC) for a solution (x̂, ξ̂) as

,
Chambolle–Pock Algorithm. with σ > 0, τ > 0, θ ∈ R reads

∂f 3 −K∗ξ̂
∂g∗(ξ̂)3 Kx̂

ξ̄(k+1) = ξ(k+1) + θ(ξ(k+1) − ξ(k))
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The Euclidean Chambolle–Pock Algorithm
[Chambolle and Pock 2011]

From the pair of primal-dual problems

min
x∈Rn

f(x) + g(Kx), K linear,

max
ξ∈Rm

− f∗(−K∗ξ)− g∗(ξ)

we obtain for f, g proper convex, lsc the

optimality conditions (OC) for a solution (x̂, ξ̂) as

,
Chambolle–Pock Algorithm. with σ > 0, τ > 0, θ ∈ R reads

x(k+1)= proxσf
(
x(k) − σK∗ξ̄(k)

)
ξ(k+1) = proxτg∗

(
ξ(k) + τKx(k+1))

ξ̄(k+1) = ξ(k+1) + θ(ξ(k+1) − ξ(k))

9



Proximal Map

For F :M→ R and λ > 0 we define the Proximal Map as
[Moreau 1965; Rockafellar 1970; Ferreira and Oliveira 2002]

proxλF p := argmin
u∈M

d(u, p)2 + λF(u).

! For a Minimizer u∗ of F we have proxλF u∗ = u∗.
▶ For F proper, convex, lsc:

▶ the proximal map is unique.
▶ PPA xk = proxλF xk−1 converges to argmin F

▶ q = proxλF p is equivalent to

1
λ

(
logq p

)♭ ∈ ∂MF(q)
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Saddle Point Formulation
Let F be geodesically convex, G ◦ expn be convex (on TnN ).

From
min
p∈C

F(p) + G(Λ(p))

we derive the saddle point formulation for the n-Fenchel conjugate of G as

min
p∈C

max
ξn∈T ∗nN

〈ξn , logn Λ(p)〉+ F(p)− G∗n(ξn).

But Λ:M→N is a non-linear operator!

For Optimality Conditions and the Dual Prolem: What’s Λ∗?

Approach. Linearization: [Valkonen 2014]

Λ(p) ≈ expΛ(m) DΛ(m)[logm p]
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The exact Riemannian Chambolle–Pock Algorithm (eRCPA)

Input: m, p(0) ∈ C ⊂M, n = Λ(m), ξ(0)n ∈ T ∗nN ,
and parameters σ, τ, θ > 0

1: k← 0
2: p̄(0) ← p(0)
3: while not converged do
4: ξ

(k+1)
n ← proxτG∗n

ξ
(k)
n + τ

(
logn Λ(p̄(k))

)
♭

5: p(k+1) ← proxσFexpp(k)

(
Pm←p(k)

(
− σDΛ(m)∗[ξ

(k+1)
n ]

)
♯
)

6: p̄(k+1) ← expp(k+1)
(
−θ logp(k+1) p(k)

)
7: k← k + 1
8: end while

Output: p(k)
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Generalizations & Variants of the RCPA
Classically

[Chambolle and Pock 2011]

▶ change σ = σk, τ = τk, θ = θk during the iterations
▶ introduce an acceleration γ

▶ relax dual ξ̄ instead of primal p̄ (switches lines 4 and 5)
Furthermore we [RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]
▶ introduce the lRCPA: linearize Λ, i. e., adopt the Euclidean case from [Valkonen 2014]

logn Λ(p̄(k)) → Pn←Λ(m)DΛ(m)[logm p̄(k)]
▶ choose n 6= Λ(m) introduces a parallel transport

DΛ(m)∗[ξ
(k+1)
n ] → DΛ(m)∗[PΛ(m)←nξ

(k+1)
n ]

▶ change m = m(k), n = n(k) during the iterations
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Manifolds.jl: A Library of Manifolds in Julia [Axen, Baran, RB, and Rzecki 2021]

ManifoldsBase.jl provides a unified interface to implement & use manifolds
also provides e.g. ValidationManifold (for debugging) and an EmbeddedManifold.

Manifolds.jl uses this interface to provide
Features.

▶ different metrics
▶ Lie groups
▶ Build manifolds using

▶ Product manifold M1 ×M2
▶ Power manifold Mn×m

▶ Tangent bundle
▶ perform statistics

Manifolds. For example
▶ (unit) Sphere
▶ Circle & Torus
▶ Fixed Rank Matrices
▶ Stiefel & Grassmann
▶ Hyperbolic space
▶ Rotations
▶ Symmetric positive definite matrices
▶ Symplectic & Symplectic Stiefel
▶ ...

see https://juliamanifolds.github.io/Manifolds.jl/
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Manopt.jl: Optimization on Manifolds in Julia
Build upon ManifoldsBase.jl to solve [RB 2022]

argmin
q∈M

f (q)

using
▶ a Problem p describing function, gradient, Hessian,…
▶ Options o specifying a solver settings and state
▶ call solve(p, o), which includes StoppingCriterion calls

implement your own solver within the solver framework
▶ initialize_solver!(p, o) to set up the solver
▶ step_solver!(p, o, i) to perform the ith step

The Manopt family: manoptjl.org
Manopt in Matlab

[N. Boumal]
manopt.org

pymanopt in Python
[J. Townsend, N. Koep, S. Weichwald]
pymanopt.org

and similar: GeomStats (Python), ROPTLIB (C++)
15
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The ℓ2-TV Model
[Rudin, Osher, and Fatemi 1992; Lellmann, Strekalovskiy, Koetter, and Cremers 2013; Weinmann, Demaret, and Storath 2014]

For a manifold-valued image f ∈M, M = N d1, d2 , we compute

argmin
p∈M

1
α

F(p) + G(Λ(p)), α > 0,

with
▶ data term F(p) = 1

2d2
M(p, f)

▶ “forward differences” Λ:M→ (TM)d1−1, d2−1, 2,

p 7→ Λ(p) =
(
(logpi pi+e1 , logpi pi+e2)

)
i∈{1,...,d1−1}×{1,...,d2−1}

▶ prior G(X) = ‖X‖g,q,1 similar to a collaborative TV [Duran, Moeller, Sbert, and Cremers 2016]
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Numerical Example for a P(3)-valued Image

P(3)-valued data. anisotropic TV, α = 6.
▶ in each pixel we have a symmetric positive definite matrix
▶ Applications: denoising/inpainting e.g. of DT-MRI data
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Numerical Example for a P(3)-valued Image

1 10 100 1,000
40

60

80

Iterations

Co
st

38.74
CPPA
PDRA
lRCPA

Approach. CPPA as benchmark
CPPA PDRA lRCPA

parameters λk = 4
k η = 0.58 σ = τ = 0.4

λ = 0.93 γ = 0.2, m = I
iterations 4000 122 113
runtime 1235 s. 380 s. 96.1 s.
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Base point Effect on S2-valued data

Original data Original data

▶ pieceweise constant result

s for both

! different linearizations lead to different models
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Base point Effect on S2-valued data

Result, m the mean (p. Px.) Result, m west (p. Px.)
▶ pieceweise constant results for both
! different linearizations lead to different models
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Base point Effect on S2-valued data

Result, m the mean (p. Px.) Result, m west (p. Px.)

50 100 150 200 250 300
1,400

1,600

1,800

2,000

Iterations

Co
st

mean
west
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Summary & Outlook

Summary.
▶ We introduced a duality framework

on Riemannian manifolds
▶ We derived a Riemannian Chambolle Pock Algorithm
▶ Numerical example illustrates performance

Outlook.
▶ strategies for choosing m, n (adaptively)
▶ investigate linearization error
▶ We started a package ManifoldsDiffEq.jl

https://github.com/JuliaManifolds/ManifoldDiffEq.jl
to combine OrdinaryDiffEq.jl and ManifoldsBase.jl

19
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