The Riemannian Chambolle-Pock Algorithm

Ronny Bergmann
joint work with
Roland Herzog, Maurício Silva Louzeiro, Daniel Tenbrinck, José Vidal-Núñez.

Manifolds and Geometric Integration Colloquia, Ilsetra,

Manifold-Valued Signals and Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

Manifold-Valued Signals and Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

Manifold-Valued Signals and Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

National elevation dataset
[Gesch, Evans, Mauck, Hutchinson, and Carswell Jr 2009]
directional data, $\mathcal{M}=\mathbb{S}^{2}$

Manifold-Valued Signals and Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

diffusion tensors in human brain from the Camino dataset http://cmic.cs.ucl.ac.uk/camino
sym. pos. def. matrices, $\mathcal{M}=\operatorname{SPD}(3)$

Manifold-Valued Signals and Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

horizontal slice \#28 from the Camino dataset http://cmic.cs.ucl.ac.uk/camino sym. pos. def. matrices, $\mathcal{M}=\operatorname{SPD}(3)$

Manifold-Valued Signals and Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

EBSD example from the MTEX toolbox Bachmann and Hielscher, since 2007
Rotations (mod. symmetry),
$\mathcal{M}=\mathrm{SO}(3)(/ \mathcal{S})$.

Manifold-Valued Signals and Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic aperture radar (InSAR)
- Surface normals, GPS data, wind, flow,...
- Diffusion tensors in magnetic resonance imaging (DT-MRI), covariance matrices
- Electron backscattered diffraction (EBSD)

Common properties

- Range of values is a Riemannian manifold
- Tasks from "classical" image processing, e.g.
- denoising
- inpainting
- interpolation
- labeling
- deblurring

A d-dimensional Riemannian manifold \mathcal{M}

A d-dimensional Riemannian manifold can be informally defined as a set \mathcal{M} covered with a 'suitable' collection of charts, that identify subsets of \mathcal{M} with open subsets of \mathbb{R}^{d} and a continuously varying inner product on the tangent spaces.

A d-dimensional Riemannian manifold \mathcal{M}

Geodesic $\gamma(\cdot ; p, q)$
a shortest path between $p, q \in \mathcal{M}$
Tangent space $\mathcal{T}_{p} \mathcal{M}$ at p
with inner product $(\cdot, \cdot)_{p}$
Logarithmic map $\log _{p} q=\dot{\gamma}(0 ; p, q)$
"speed towards q "
Exponential map $\exp _{p} X=\gamma_{p, X}(1)$, where $\gamma_{p, X}(0)=p$ and $\dot{\gamma}_{p, X}(0)=X$
Parallel transport $\mathrm{P}_{q \leftarrow p} Y$ from $\mathcal{T}_{p} \mathcal{M}$ along $\gamma(\cdot ; p, q)$ to $\mathcal{T}_{q} \mathcal{M}$

The Model

We consider a minimization problem

$$
\underset{p \in \mathcal{C}}{\arg \min } F(p)+G(\Lambda(p))
$$

- \mathcal{M}, \mathcal{N} are (high-dimensional) Riemannian Manifolds
- $F: \mathcal{M} \rightarrow \overline{\mathbb{R}}$ nonsmooth, (locally, geodesically) convex
- $G: \mathcal{N} \rightarrow \overline{\mathbb{R}}$ nonsmooth, (locally) convex
- $\wedge: \mathcal{M} \rightarrow \mathcal{N}$ nonlinear
- $\mathcal{C} \subset \mathcal{M}$ strongly geodesically convex.
Θ In image processing:
choose a model, such that finding a minimizer yields the reconstruction

Splitting Methods \& Algorithms

On a Riemannian manifold \mathcal{M} we have

- Cyclic Proximal Point Algorithm (CPPA)
- (parallel) Douglas-Rachford Algorithm (PDRA)
[RB, Persch, and Steidl 2016]
On \mathbb{R}^{n} PDRA is known to be equivalent to
[O'Connor and Vandenberghe 2018; Setzer 2011]
- Primal-Dual Hybrid Gradient Algorithm (PDHGA)
[Esser, Zhang, and Chan 2010]
- Chambolle-Pock Algorithm (CPA) [Chambolle and Pock 2011; Pock, Cremers, Bischof, and Chambolle 2009]

But on a Riemannian manifold \mathcal{M} : \triangle no duality theory!

Goals of this talk.

Formulate Duality on a Manifold
Derive a Riemannian Chambolle-Pock Algorithm (RCPA)

The Euclidean Fenchel Conjugate

Let $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be proper and convex.
We define the Fenchel conjugate $f^{*}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ of f by

$$
f^{*}(\xi):=\sup _{x \in \mathbb{R}^{n}}\langle\xi, x\rangle-f(x)=\sup _{x \in \mathbb{R}^{n}}\binom{\xi}{-1}^{\top}\binom{x}{f(x)}
$$

- interpretation: maximize the distance of $\xi^{\top} x$ to f
\Rightarrow extremum seeking problem on the epigraph
The Fenchel biconjugate reads

$$
f^{* *}(x)=\left(f^{*}\right)^{*}(x)=\sup _{\xi \in \mathbb{R}^{n}}\left\{\langle\xi, x\rangle-f^{*}(\xi)\right\} .
$$

Illustration of the Fenchel Conjugate

The Fenchel conjugate f^{*}

The Riemannian m-Fenchel Conjugate

[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021] alternative approaches: [Ahmadi Kakavandi and Amini 2010; Silva Louzeiro, RB, and Herzog 2022]
Idea: Introduce a point on \mathcal{M} to "act as" 0 .
Let $m \in \mathcal{C} \subset \mathcal{M}$ be given and $F: \mathcal{C} \rightarrow \overline{\mathbb{R}}$.
The m-Fenchel conjugate $F_{m}^{*}: \mathcal{T}_{m}^{*} \mathcal{M} \rightarrow \overline{\mathbb{R}}$ is defined by

$$
F_{m}^{*}\left(\xi_{m}\right):=\sup _{X \in \mathcal{L}_{\mathcal{C}, m}}\left\{\left\langle\xi_{m}, X\right\rangle-F\left(\exp _{m} X\right)\right\},
$$

where $\mathcal{L}_{\mathcal{C}, m}:=\left\{X \in \mathcal{T}_{m} \mathcal{M} \mid q=\exp _{m} X \in \mathcal{C}\right.$ and $\left.\|X\|_{p}=d(q, p)\right\}$.
Let $m^{\prime} \in \mathcal{C}$.
The $m m^{\prime}$-Fenchel-biconjugate $F_{m m^{\prime}}^{* *}: \mathcal{C} \rightarrow \overline{\mathbb{R}}$ is given by

$$
F_{m m^{\prime}}^{* *}(p)=\sup _{\xi_{m^{\prime}} \in \mathcal{T}_{m^{\prime}}^{*} \mathcal{M}}\left\{\left\langle\xi_{m^{\prime}}, \log _{m^{\prime}} p\right\rangle-F_{m}^{*}\left(\mathrm{P}_{m \leftarrow m^{\prime}} \xi_{m^{\prime}}\right)\right\} .
$$

usually we only use the case $m=m^{\prime}$.

The Euclidean Chambolle-Pock Algorithm

From the pair of primal-dual problems

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} f(x)+g(K x), \quad K \text { linear, } \\
& \max _{\xi \in \mathbb{R}^{m}}-f^{*}\left(-K^{*} \xi\right)-g^{*}(\xi)
\end{aligned}
$$

we obtain for f, g proper convex, Isc the optimality conditions (OC) for a solution $(\hat{x}, \hat{\xi})$ as

$$
\begin{gathered}
\partial f \quad \ni-K^{*} \hat{\xi} \\
\partial g^{*}(\hat{\xi}) \ni K \hat{x}
\end{gathered}
$$

The Euclidean Chambolle-Pock Algorithm

From the pair of primal-dual problems

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} f(x)+g(K x), \quad K \text { linear, } \\
& \max _{\xi \in \mathbb{R}^{m}}-f^{*}\left(-K^{*} \xi\right)-g^{*}(\xi)
\end{aligned}
$$

we obtain for f, g proper convex, Isc the
Chambolle-Pock Algorithm. with $\sigma>0, \tau>0, \theta \in \mathbb{R}$ reads

$$
\begin{aligned}
x^{(k+1)} & =\operatorname{prox}_{\sigma f}\left(x^{(k)}-\sigma K^{*} \bar{\xi}^{(k)}\right) \\
\xi^{(k+1)} & =\operatorname{prox}_{\tau g^{*}}\left(\xi^{(k)}+\tau K x^{(k+1)}\right) \\
\bar{\xi}^{(k+1)} & =\xi^{(k+1)}+\theta\left(\xi^{(k+1)}-\xi^{(k)}\right)
\end{aligned}
$$

Proximal Map

For $F: \mathcal{M} \rightarrow \overline{\mathbb{R}}$ and $\lambda>0$ we define the Proximal Map as
[Moreau 1965; Rockafellar 1970; Ferreira and Oliveira 2002]

$$
\operatorname{prox}_{\lambda F} p:=\underset{u \in \mathcal{M}}{\arg \min } d(u, p)^{2}+\lambda F(u) .
$$

! For a Minimizer u^{*} of F we have $\operatorname{prox}_{\lambda F} u^{*}=u^{*}$.

- For F proper, convex, Isc:
- the proximal map is unique.
- PPA $x_{k}=\operatorname{prox}_{\lambda F} x_{k-1}$ converges to $\arg \min F$
- $q=\operatorname{prox}_{\lambda F} p$ is equivalent to

$$
\frac{1}{\lambda}\left(\log _{q} p\right)^{b} \in \partial_{\mathcal{M}} F(q)
$$

Saddle Point Formulation

Let F be geodesically convex, $G \circ \exp _{n}$ be convex (on $\left.\mathcal{T}_{n} \mathcal{N}\right)$.
From

$$
\min _{p \in \mathcal{C}} F(p)+G(\Lambda(p))
$$

we derive the saddle point formulation for the n-Fenchel conjugate of G as

$$
\min _{p \in \mathcal{C}} \max _{\xi_{n} \in \mathcal{T}_{n}^{* \mathcal{N}}}\left\langle\xi_{n}, \log _{n} \Lambda(p)\right\rangle+F(p)-G_{n}^{*}\left(\xi_{n}\right) .
$$

But $\Lambda: \mathcal{M} \rightarrow \mathcal{N}$ is a non-linear operator!
For Optimality Conditions and the Dual Prolem: What's Λ^{*} ?
Approach. Linearization:

$$
\Lambda(p) \approx \exp _{\Lambda(m)} D \Lambda(m)\left[\log _{m} p\right]
$$

The exact Riemannian Chambolle-Pock Algorithm (eRCPA)

Input: $m, p^{(0)} \in \mathcal{C} \subset \mathcal{M}, n=\Lambda(m), \xi_{n}^{(0)} \in \mathcal{T}_{n}^{*} \mathcal{N}$, and parameters $\sigma, \tau, \theta>0$
1: $k \leftarrow 0$
2: $\bar{p}^{(0)} \leftarrow p^{(0)}$
3: while not converged do
4: $\quad \xi_{n}^{(k+1)} \leftarrow \operatorname{prox}_{\tau}{G_{n}^{*}} \xi_{n}^{(k)}+\tau\left(\log _{n} \Lambda\left(\bar{p}^{(k)}\right)\right)^{b}$
5: $\quad p^{(k+1)} \leftarrow \operatorname{prox}_{\sigma} \mathcal{F}^{\exp } p_{p^{(k)}}\left(\mathrm{P}_{m \leftarrow} p^{(k)}\left(-\sigma D \Lambda(m)^{*}\left[\xi_{n}^{(k+1)}\right]\right)^{\sharp}\right)$
6: $\quad \bar{p}^{(k+1)} \leftarrow \exp _{p^{(k+1)}}\left(-\theta \log _{p^{(k+1)}} p^{(k)}\right)$
7: $\quad k \leftarrow k+1$
8: end while
Output: $p^{(k)}$

Generalizations \& Variants of the RCPA

Classically

- change $\sigma=\sigma_{k}, \tau=\tau_{k}, \theta=\theta_{k}$ during the iterations
- introduce an acceleration γ
- relax dual $\bar{\xi}$ instead of primal \bar{p} (switches lines 4 and 5)

Furthermore we
[RB, Herzog, Silva Louzeiro, Tenbrinck, and Vidal-Núñez 2021]

- introduce the IRCPA: linearize Λ, i. e., adopt the Euclidean case from

$$
\log _{n} \Lambda\left(\bar{p}^{(k)}\right) \quad \rightarrow \quad \mathrm{P}_{n \leftarrow \Lambda(m)} D \Lambda(m)\left[\log _{m} \bar{p}^{(k)}\right]
$$

- choose $n \neq \Lambda(m)$ introduces a parallel transport

$$
D \Lambda(m)^{*}\left[\xi_{n}^{(k+1)}\right] \quad \rightarrow \quad D \Lambda(m)^{*}\left[\mathrm{P}_{\Lambda(m) \leftarrow n} \xi_{n}^{(k+1)}\right]
$$

- change $m=m^{(k)}, n=n^{(k)}$ during the iterations

Manifolds.jl: A Library of Manifolds in Julia

ManifoldsBase.jl provides a unified interface to implement \& use manifolds also provides e.g. ValidationManifold (for debugging) and an EmbeddedManifold.

Manifolds.jl uses this interface to provide

Features.

- different metrics
- Lie groups
- Build manifolds using
- Product manifold $\mathcal{M}_{1} \times \mathcal{M}_{2}$
- Power manifold $\mathcal{M}^{n \times m}$
- Tangent bundle
- perform statistics

Manifolds. For example

- (unit) Sphere
- Circle \& Torus
- Fixed Rank Matrices
- Stiefel \& Grassmann
- Hyperbolic space
- Rotations
- Symmetric positive definite matrices
- Symplectic \& Symplectic Stiefel
see https://juliamanifolds.github.io/Manifolds.jl/

Manopt.jl: Optimization on Manifolds in Julia

Build upon ManifoldsBase.jl to solve

$$
\arg \min f(q)
$$

$$
q \in \mathcal{M}
$$

using

- a Problem p describing function, gradient, Hessian,...
- Options o specifying a solver settings and state
- call solve(p, o), which includes StoppingCriterion calls\rightarrow implement your own solver within the solver framework
- initialize_solver! (p, o) to set up the solver
- step_solver! (p, o, i) to perform the ith step

The Manopt family:目manoptjl.org

pymanopt in Python
[J. Townsend, N. Koep, S. Weichwald] and similar: GeomStats (Python), ROPTLIB ($\mathrm{C}++$)

The ℓ^{2}-TV Model

[Rudin, Osher, and Fatemi 1992; Lellmann, Strekalovskiy, Koetter, and Cremers 2013; Weinmann, Demaret, and Storath 2014]
For a manifold-valued image $f \in \mathcal{M}, \mathcal{M}=\mathcal{N}^{d_{1}}, d_{2}$, we compute

$$
\underset{p \in \mathcal{M}}{\arg \min } \frac{1}{\alpha} F(p)+G(\Lambda(p)), \quad \alpha>0
$$

with

- data term $F(p)=\frac{1}{2} d_{\mathcal{M}}^{2}(p, f)$
- "forward differences" $\wedge: \mathcal{M} \rightarrow(T \mathcal{M})^{d_{1}-1, d_{2}-1,2}$,

$$
p \mapsto \Lambda(p)=\left(\left(\log _{p_{i}} p_{i+e_{1}}, \log _{p_{i}} p_{i+e_{2}}\right)\right)_{i \in\left\{1, \ldots, d_{1}-1\right\} \times\left\{1, \ldots, d_{2}-1\right\}}
$$

- prior $G(X)=\|X\|_{g, q, 1}$ similar to a collaborative TV

Numerical Example for a $\mathcal{P}(3)$-valued Image

- in each pixel we have a symmetric positive definite matrix
- Applications: denoising/inpainting e.g. of DT-MRI data

Numerical Example for a $\mathcal{P}(3)$-valued Image

Base point Effect on \mathbb{S}^{2}-valued data

Base point Effect on \mathbb{S}^{2}-valued data

Result, m the mean (p. Px.)

Base point Effect on \mathbb{S}^{2}-valued data

Summary \& Outlook

Summary.

- We introduced a duality framework on Riemannian manifolds
- We derived a Riemannian Chambolle Pock Algorithm
- Numerical example illustrates performance

Outlook.

- strategies for choosing m, n (adaptively)
- investigate linearization error
- We started a package ManifoldsDiffEq.j1
https://github.com/JuliaManifolds/ManifoldDiffEq.jl to combine OrdinaryDiffEq.jl and ManifoldsBase.jl

Selected References

Axen, S. D., M. Baran, RB, and K. Rzecki (2021). Manifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds. arXiv: 2106.08777.
Bačák, M. (2014). "Computing medians and means in Hadamard spaces". In: SIAM Journal on Optimization 24.3, pp. 1542-1566. DOI: 10.1137/140953393.
RB (2022). "Manopt.jl: Optimization on Manifolds in Julia". In: Journal of Open Source Software 7.70, p. 3866. DOI: 10.21105/joss. 03866.

RB, R. Herzog, M. Silva Louzeiro, D. Tenbrinck, and J. Vidal-Núñez (Jan. 2021). "Fenchel duality theory and a primal-dual algorithm on Riemannian manifolds". In: Foundations of Computational Mathematics. DOI: $10.1007 / \mathrm{s} 10208-020-09486-5$. arXiv: 1908.02022.
RB, J. Persch, and G. Steidl (2016). "A parallel Douglas Rachford algorithm for minimizing ROF-like functionals on images with values in symmetric Hadamard manifolds". In: SIAM Journal on Imaging Sciences 9.4, pp. 901-937. DOI: 10.1137/15M1052858.
Chambolle, A. and T. Pock (2011). "A first-order primal-dual algorithm for convex problems with applications to imaging". In: Journal of Mathematical Imaging and Vision 40.1, pp. 120-145. DoI: 10.1007/s10851-010-0251-1.

Silva Louzeiro, M., RB, and R. Herzog (2022). Fenchel Duality and a Separation Theorem on Hadamard Manifolds. accepted for publication. arXiv: 2102.11155.
© ronnybergmann.net/talks/2022-MaGIC-RiemannianChambollePock.pdf

